Browse

You are looking at 1 - 2 of 2 items for :

  • Gynaecomastia x
  • Genetics and mutation x
  • Refine by Access: All content x
Clear All
Open access

Priya Vaidyanathan and Paul Kaplowitz

Summary

Pubertal gynecomastia is common, can be seen in 65% of the adolescent boys and is considered physiological. It is thought to be due to transient imbalance between the ratio of testosterone and estradiol in the early stages of puberty. It resolves in 1–2 years and requires no treatment. However, more persistent and severe pubertal gynecomastia is less common and can be associated with pathological disorders. These can be due to diminished androgen production, increased estrogen production or androgen resistance. We report a case of persistent pubertal gynecomastia due to partial androgen insensitivity syndrome (PAIS), classical hormone findings and a novel mutation in the androgen receptor (AR) gene.

Learning points:

  • Laboratory testing of follicle-stimulating hormone (FSH), leutinizing hormone (LH) and testosterone for pubertal gynecomastia is most helpful in the setting of undervirization.

  • The hormonal finding of very high testosterone, elevated LH and estradiol and relatively normal FSH are classical findings of PAIS.

  • Gynecomastia due to PAIS will not resolve and surgery for breast reduction should be recommended.

Open access

Avinash Suryawanshi, Timothy Middleton, and Kirtan Ganda

Summary

X-linked adrenoleukodystrophy (X-ALD) is a rare genetic condition caused by mutations in the ABCD1 gene that result in accumulation of very long chain fatty acids (VLCFAs) in various tissues. This leads to demyelination in the CNS and impaired steroidogenesis in the adrenal cortex and testes. A 57-year-old gentleman was referred for the assessment of bilateral gynaecomastia of 6 months duration. He had skin hyperpigmentation since 4 years of age and spastic paraparesis for the past 15 years. Physical examination findings included generalised hyperpigmentation (including skin, buccal mucosa and palmar creases), blood pressure of 90/60 mmHg, non-tender gynaecomastia and bilateral hypoplastic testes. Lower limb findings were those of a profoundly ataxic gait associated with significant paraparesis and sensory loss. Primary adrenal insufficiency was confirmed and investigations for gynaecomastia revealed normal testosterone with mildly elevated luteinising hormone level and normal prolactin. The combination of primary adrenal insufficiency (likely childhood onset), partial testicular failure (leading to gynaecomastia) and spastic paraparesis suggested X-ALD as a unifying diagnosis. A serum VLCFA panel was consistent with X-ALD. Subsequent genetic testing confirmed the diagnosis. Treatment with replacement doses of corticosteroid resulted in improvement in blood pressure and increased energy levels. We have reported the case of a 57-year-old man with a very late diagnosis of X-ALD manifested by childhood onset of primary adrenal insufficiency followed by paraparesis and primary hypogonadism in adulthood. Thus, X-ALD should be considered as a possibility in a patient with non-autoimmune primary adrenal insufficiency and neurological abnormalities.

Learning points

  • Adult patients with X-ALD may be misdiagnosed as having multiple sclerosis or idiopathic spastic paraparesis for many years before the correct diagnosis is identified.

  • Screening for X-ALD with a VLCFA panel should be strongly considered in male children with primary adrenal insufficiency and in male adults presenting with non-autoimmune primary adrenal insufficiency.

  • Confirmation of a genetic diagnosis of X-ALD can be very useful for a patient's family as genetic testing enables detection of pre-symptomatic female heterozygotes who can then be offered pre-natal testing to avoid transmission of the disease to male offsprings.