Browse

You are looking at 1 - 3 of 3 items for :

  • Growth retardation x
  • Insight into disease pathogenesis or mechanism of therapy x
  • Refine by Access: All content x
Clear All
Open access

Kewan Hamid, Neha Dayalani, Muhammad Jabbar, and Elna Saah

Summary

A 6-year-old female presented with chronic intermittent abdominal pain for 1 year. She underwent extensive investigation, imaging and invasive procedures with multiple emergency room visits. It caused a significant distress to the patient and the family with multiple missing days at school in addition to financial burden and emotional stress the child endured. When clinical picture was combined with laboratory finding of macrocytic anemia, a diagnosis of hypothyroidism was made. Although chronic abdominal pain in pediatric population is usually due to functional causes such as irritable bowel syndrome, abdominal migraine and functional abdominal pain. Hypothyroidism can have unusual presentation including abdominal pain. The literature on abdominal pain as the main presentation of thyroid disorder is limited. Pediatricians should exclude hypothyroidism in a patient who presents with chronic abdominal pain. Contrast to its treatment, clinical presentation of hypothyroidism can be diverse and challenging, leading to a delay in diagnosis and causing significant morbidity.

Learning points:

  • Hypothyroidism can have a wide range of clinical presentations that are often nonspecific, which can cause difficulty in diagnosis.

  • In pediatric patients presenting with chronic abdominal pain as only symptom, hypothyroidism should be considered by the pediatricians and ruled out.

  • In pediatric population, treatment of hypothyroidism varies depending on patients’ weight and age.

  • Delay in diagnosis of hypothyroidism can cause significant morbidity and distress in pediatrics population.

Open access

Jia Xuan Siew and Fabian Yap

Summary

Growth anomaly is a prominent feature in Wolf-Hirschhorn syndrome (WHS), a rare congenital disorder caused by variable deletion of chromosome 4p. While growth charts have been developed for WHS patients 0–4 years of age and growth data available for Japanese WHS patients 0–17 years, information on pubertal growth and final height among WHS children remain lacking. Growth hormone (GH) therapy has been reported in two GH-sufficient children with WHS, allowing for pre-puberty catch up growth; however, pubertal growth and final height information was also unavailable. We describe the complete growth journey of a GH-sufficient girl with WHS from birth until final height (FH), in relation to her mid parental height (MPH) and target range (TR). Her growth trajectory and pubertal changes during childhood, when she was treated with growth hormone (GH) from 3 years 8 months old till 6 months post-menarche at age 11 years was fully detailed.

Learning points:

  • Pubertal growth characteristics and FH information in WHS is lacking.

  • While pre-pubertal growth may be improved by GH, GH therapy may not translate to improvement in FH in WHS patients.

  • Longitudinal growth, puberty and FH data of more WHS patients may improve the understanding of growth in its various phases (infancy/childhood/puberty).

Open access

Anna Casteràs, Jürgen Kratzsch, Ángel Ferrández, Carles Zafón, Antonio Carrascosa, and Jordi Mesa

Summary

Isolated GH deficiency type IA (IGHDIA) is an infrequent cause of severe congenital GHD, often managed by pediatric endocrinologists, and hence few cases in adulthood have been reported. Herein, we describe the clinical status of a 56-year-old male with IGHDIA due to a 6.7 kb deletion in GH1 gene that encodes GH, located on chromosome 17. We also describe phenotypic and biochemical parameters, as well as characterization of anti-GH antibodies after a new attempt made to treat with GH. The height of the adult patient was 123 cm. He presented with type 2 diabetes mellitus, dyslipidemia, osteoporosis, and low physical and psychological performance, compatible with GHD symptomatology. Anti-GH antibodies in high titers and with binding activity (>101 IU/ml) were found 50 years after exposure to exogenous GH, and their levels increased significantly (>200 U/ml) after a 3-month course of 0.2 mg/day recombinant human GH (rhGH) treatment. Higher doses of rhGH (1 mg daily) did not overcome the blockade, and no change in undetectable IGF1 levels was observed (<25 ng/ml). IGHDIA patients need lifelong medical surveillance, focusing mainly on metabolic disturbances, bone status, cardiovascular disease, and psychological support. Multifactorial conventional therapy focusing on each issue is recommended, as anti-GH antibodies may inactivate specific treatment with exogenous GH. After consideration of potential adverse effects, rhIGF1 treatment, even theoretically indicated, has not been considered in our patient yet.

Learning points

  • Severe isolated GHD may be caused by mutations in GH1 gene, mainly a 6.7 kb deletion.

  • Appearance of neutralizing anti-GH antibodies upon recombinant GH treatment is a characteristic feature of IGHDIA.

  • Recombinant human IGF1 treatment has been tested in children with IGHDIA with variable results in height and secondary adverse effects, but any occurrence in adult patients has not been reported yet.

  • Metabolic disturbances (diabetes and hyperlipidemia) and osteoporosis should be monitored and properly treated to minimize cardiovascular disease and fracture risk.

  • Cerebral magnetic resonance imaging should be repeated in adulthood to detect morphological abnormalities that may have developed with time, as well as pituitary hormones periodically assessed.