Browse

You are looking at 1 - 2 of 2 items for :

  • Molecular genetic analysis x
  • Refine by Access: All content x
Clear All
Open access

Andrew R Tang, Laura E Hinz, Aneal Khan, and Gregory A Kline

Summary

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare, autosomal recessive disorder caused by mutations in the SLC34A3 gene that encodes the renal sodium-dependent phosphate cotransporter 2c (NaPi-IIc). It may present as intermittent mild hypercalcemia which may attract initial diagnostic attention but appreciation of concomitant hypophosphatemia is critical for consideration of the necessary diagnostic approach. A 21-year-old woman was assessed by adult endocrinology for low bone mass. She initially presented age two with short stature, nephrocalcinosis and mild intermittent hypercalcemia with hypercalciuria. She had no evidence of medullary sponge kidney or Fanconi syndrome and no bone deformities, pain or fractures. She had recurrent episodes of nephrolithiasis. In childhood, she was treated with hydrochlorothiazide to reduce urinary calcium. Upon review of prior investigations, she had persistent hypophosphatemia with phosphaturia, low PTH and a high-normal calcitriol. A diagnosis of HHRH was suspected and genetic testing confirmed a homozygous c.1483G>A (p.G495R) missense mutation of the SLC34A3 gene. She was started on oral phosphate replacement which normalized her serum phosphate, serum calcium and urine calcium levels over the subsequent 5 years. HHRH is an autosomal recessive condition that causes decreased renal reabsorption of phosphate, leading to hyperphosphaturia, hypophosphatemia and PTH-independent hypercalcemia due to the physiologic increase in calcitriol which also promotes hypercalciuria. Classically, patients present in childhood with bone pain, vitamin D-independent rickets and growth delay. This case of a SLC34A3 mutation illustrates the importance of investigating chronic hypophosphatemia even in the presence of other more common electrolyte abnormalities.

Learning points:

  • Hypophosphatemia is an important diagnostic clue that should not be ignored, even in the face of more common electrolyte disorders.

  • HHRH is a cause of PTH-independent hypophosphatemia that may also show hypercalcemia.

  • HHRH is a cause of hypophosphatemic nephrocalcinosis that should not be treated with calcitriol, unlike other congenital phosphate wasting syndromes.

  • Some congenital phosphate wasting disorders may not present until adolescence or early adulthood.

Open access

Maria P Yavropoulou, Efstathios Chronopoulos, George Trovas, Emmanouil Avramidis, Francesca Marta Elli, Giovanna Mantovani, Pantelis Zebekakis, and John G Yovos

Summary

Pseudohypoparathyroidism (PHP) is a heterogeneous group of rare endocrine disorders characterised by normal renal function and renal resistance to the action of the parathyroid hormone. Type 1A (PHP1A), which is the most common variant, also include developmental and skeletal defects named as Albright hereditary osteodystrophy (AHO). We present two cases, a 54- and a 33-year-old male diagnosed with PHP who were referred to us for persistently high levels of serum calcitonin. AHO and multinodular goitre were present in the 54-year-old male, while the second patient was free of skeletal deformities and his thyroid gland was of normal size and without nodular appearance. We performed GNAS molecular analysis (methylation status and copy number analysis by MS-MLPA) in genomic DNA samples for both patients. The analysis revealed a novel missense variant c.131T>G p.(Leu44Pro) affecting GNAS exon 1, in the patient with the clinical diagnosis of PHP1A. This amino acid change appears to be in accordance with the clinical diagnosis of the patient. The genomic DNA analysis of the second patient revealed the presence of the recurrent 3-kb deletion affecting the imprinting control region localised in the STX16 region associated with the loss of methylation (LOM) at the GNAS A/B differentially methylated region and consistent with the diagnosis of an autosomal dominant form of PHP type 1B (PHP1B). In conclusion, hypercalcitoninaemia may be encountered in PHP1A and PHP1B even in the absence of thyroid pathology.

Learning points:

  • We describe a novel missense variant c.131T>G p.(Leu44Pro) affecting GNAS exon 1 as the cause of PHP1A.

  • Hypercalcitoninaemia in PHP1A is considered an associated resistance to calcitonin, as suggested by the generalised impairment of Gsα-mediated hormone signalling.

  • GNAS methylation defects, as in type PHP1B, without thyroid pathology can also present with hypercalcitoninaemia.