Browse

You are looking at 1 - 10 of 28 items for :

  • Unique/unexpected symptoms or presentations of a disease x
  • Publication Details x
  • Patient Demographics x
  • Refine by Access: All content x
Clear All
Open access

Toshitaka Sawamura, Shigehiro Karashima, Ai Ohmori, Kei Sawada, Daisuke Aono, Mitsuhiro Kometani, Yoshiyu Takeda, and Takashi Yoneda

Summary

Fulminant type 1 diabetes (FT1D) is a subtype of diabetes characterized by rapid progression of β-cell destruction, hyperglycemia, and diabetic ketoacidosis (DKA). The pathogenesis of this disease remains unclear. However, viral infections, HLA genes, and immune checkpoint inhibitor use were reportedly involved in this disease. A 51-year-old Japanese man with no chronic medical condition was admitted to our hospital with complaints of nausea and vomiting. Cough, sore throat, nasal discharge, and diarrhea were not noted. He had a medical history of at least two influenza infections. His vaccination history was notable for receiving an inactive split influenza vaccine 12 days prior to developing these symptoms. He was diagnosed with DKA associated with FT1D. His HLA class II genotypes were nonsusceptible to FT1D, and he had a negative history of immune checkpoint inhibitor use. The destruction of the pancreas by cytotoxic T cells is reported to be involved in FT1D. Inactive split influenza vaccines do not directly activate cytotoxic T cells. However, these could activate the redifferentiation of memory CD8-positive T cells into cytotoxic T cells and induce FT1D, as this patient had a history of influenza infections.

Learning points

  • Influenza split vaccination could cause fulminant type 1 diabetes (FT1D).

  • The mechanism of influenza split vaccine-induced FT1D might be through the redifferentiation of CD8-positive memory T cells into cytotoxic T cells.

Open access

Micah A Fischer, Ghada A Elmahmudi, Bracha K Goldsweig, and Salaheddin H Elrokhsi

Summary

Multiple research studies address the anti-insulinemic effect of growth hormone (GH). We report a case of a patient with anterior hypopituitarism on GH replacement who later developed type 1 diabetes mellitus (T1DM). Recombinant human growth hormone (rhGH) therapy was discontinued at the time of growth completion. Because of significantly improved glycemic control, this patient was weaned off subcutaneous insulin. He regressed from stage 3 to stage 2 T1DM and remained in this status for at least 2 years and until the writing of this paper. The diagnosis of T1DM was established based on relatively low C-peptide and insulin levels for the degree of hyperglycemia as well as seropositivity of zinc transporter antibody and islet antigen-2 antibody. Additional laboratory data obtained 2 months after discontinuing rhGH revealed improved endogenous insulin secretion. This case report calls attention to the diabetogenic effect of GH therapy in the setting of T1DM. It also demonstrates the possibility of regression from stage 3 T1DM requiring insulin therapy to stage 2 T1DM with asymptomatic dysglycemia after discontinuing rhGH.

Learning points

  • Given the diabetogenic effect of growth hormone, blood glucose levels should be monitored in patients with type 1 diabetes mellitus (T1DM) on insulin therapy and recombinant human growth hormone (rhGH) replacement.

  • Clinicians should closely monitor for risk of hypoglycemia after discontinuing rhGH among T1DM patients who are on insulin treatment.

  • The discontinuation of rhGH in the setting of T1DM may cause regression of symptomatic T1DM to asymptomatic dysglycemia requiring no insulin treatment.

Open access

Osamu Horikawa, Satoshi Ugi, Tomofumi Takayoshi, Yasushi Omura, Maya Yonishi, Daisuke Sato, Yukihiro Fujita, Tomoya Fuke, Yushi Hirota, Wataru Ogawa, and Hiroshi Maegawa

Summary

A 17-year-old boy was referred to our endocrinology clinic for a clinical investigation of hyperinsulinemia. An oral glucose tolerance test showed plasma glucose concentrations in the normal range. However, insulin concentrations were considerably elevated (0 min: 71 μU/mL; 60 min: 953 μU/mL), suggesting severe insulin resistance. An insulin tolerance test confirmed that he had insulin resistance. There was no apparent hormonal or metabolic cause, including obesity. The patient had no outward features of hyperinsulinemia, including acanthosis nigricans or hirsutism. However, his mother and grandfather also had hyperinsulinemia. Genetic testing showed that the patient (proband), his mother, and his grandfather had a novel p.Val1086del heterozygous mutation in exon 17 of the insulin receptor gene (INSR). Although all three family members have the same mutation, their clinical courses have been different. The onset of the mother’s diabetes was estimated at 50 years, whereas the grandfather developed diabetes at 77 years.

Learning points

  • Type A insulin resistance syndrome is caused by mutations in the insulin receptor (INSR) gene and results in severe insulin resistance.

  • Genetic evaluation should be considered in adolescents or young adults with dysglycemia when an atypical phenotype, such as severe insulin resistance, or a relevant family history is observed.

  • Clinical courses may differ even if the same genetic mutation is found in a family.

Open access

Valerie Lai, Mariam Shahidi, Alicia Chan, and Shailly Jain-Ghai

Summary

3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) lyase deficiency is an inborn error of metabolism resulting in a lack of ketogenesis and leucine catabolism. Hallmarks of decompensation include hypoglycemia without ketosis (or hypoketosis), metabolic acidosis, and hyperammonemia. Management includes avoiding fasting and restricting dietary protein and fat. Conversely, type 2 diabetes mellitus (T2DM) requires carbohydrate restriction and/or anti-hyperglycemic agents; thus, managing these co-existing disorders is challenging. A 36-year-old male with HMG-CoA lyase deficiency and T2DM (Hemoglobin A1c (HbA1c): 7.9%) presented with confusion and shock. Blood work revealed metabolic acidosis, hyperammonemia, hyperglycemia, and hypoketosis. The patient was diagnosed with hyperosmolar non-ketotic hyperglycemia and hyperammonemia secondary to HMG-CoA lyase metabolic decompensation requiring intensive care unit admission. Hyperammonemia management was challenging because alternative calories with i.v. dextrose (due to hyperglycemia) and i.v. lipids (due to HMG-CoA lyase deficiency) could not be provided as usual. The patient was started on hemodialysis and i.v. insulin with marked improvement. Once stabilized, metformin and insulin were initiated. T2DM impaired cellular glucose uptake and produced a state similar to hypoglycemia, despite the patient being profoundly hyperglycemic, which led to metabolic decompensation of HMG-CoA lyase deficiency. Managing T2DM and HMG-CoA lyase deficiency warrants special considerations due to the potential for metabolic decompensation with both hyperglycemia and hypoglycemia.

Learning points

  • In a patient with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) lyase deficiency and type 2 diabetes mellitus (T2DM), management principles include avoiding hypoglycemia to prevent metabolic decompensation, providing insulin for proper glucose utilization, and moderation of carbohydrate intake to prevent consequences of chronic hyperglycemia.

  • The development of insulin resistance in the form of T2DM in HMG-CoA lyase deficiency likely triggered a state similar to hypoglycemia, leading to cellular energy deficiency and subsequently metabolic decompensation.

  • It is important to avoid hypoglycemia in patients with HMG-CoA lyase deficiency and T2DM, as the risk of metabolic decompensation is increased due to the lack of ketogenesis in HMG-CoA lyase deficiency.

  • Selection of antidiabetic agents in this patient population requires careful consideration, and agents that have a higher risk of hypoglycemia should be avoided.

Open access

Raad Alwithenani, Danielle M Andrade, Lingxin Zhang, and Karen E Gomez-Hernandez

Summary

Myopathy caused by thyrotoxicosis is not uncommon. Skeletal muscles are commonly involved, but dysphagia is a rare manifestation of thyrotoxicosis. We aim to raise awareness of dysphagia caused by hyperthyroidism and review similar cases in the literature. We present a case of severe dysphagia caused by hyperthyroidism. We also summarize similar case reports in the literature. Our patient is a 77-year-old man who presented with thyrotoxicosis related to Graves’ disease (GD), dysphagia to both liquid and solid food, and weight loss. Further investigations revealed severe esophageal dysphagia and a high risk for aspiration. He required the placement of a G-tube for feeding. After 8 weeks of methimazole treatment, his thyroid function normalized and his dysphagia improved significantly, leading to the removal of the feeding G-tube. We summarize 19 case reports published in the literature of hyperthyroidism leading to dysphagia. Patients with thyrotoxicosis and dysphagia are at higher risk for aspiration pneumonia and thyroid storm. Based on previous case reports, on average, approximately 3 weeks of treatment with anti-thyroidal drugs and beta-blockers is needed before patients can eat normally. We report a case of dysphagia associated with GD, which is rare and needs prompt recognition to restore euthyroid status. Dysphagia generally resolved with normalization of thyroid function.

Learning points

  • Myopathy caused by thyrotoxicosis is not uncommon.

  • Skeletal muscles are commonly involved, but dysphagia is a rare manifestation of thyrotoxicosis.

  • Dysphagia due to hyperthyroidism resolves with normalization of thyroid function.

  • Early recognition of dysphagia related to hyperthyroidism and early initiation of therapy may help reverse the dysphagia and prevent complications.

Open access

George Brown, Anthony Mark Monaghan, Richard Fristedt, Emma Ramsey, Ma’en Al-Mrayat, Rushda Rajak, Thomas Armstrong, and Arjun Takhar

Summary

Vasoactive intestinal peptide-secreting tumours (VIPomas) are an extremely rare form of functional pancreatic neuroendocrine tumour with an estimated annual incidence of 1 in 10 million. Associated tumour hypersecretion of other peptides, including pancreatic polypeptide (PPomas), may also be seen. These malignancies classically present with a defined triad of refractory diarrhoea, hypokalaemia and metabolic acidosis known as Verner–Morrison syndrome. Diagnosis is frequently delayed, and the majority of patients will have metastatic disease at presentation. Symptoms are usually well controlled with somatostatin analogue administration. Here we report a case of metastatic mixed VIPoma/PPoma-induced diarrhoea causing renal failure so severe that ultrafiltration was required to recover adequate renal function.

Learning points

  • Profuse, watery diarrhoea is a common presenting complaint with a multitude of aetiologies. This, combined with the rarity of these tumours, makes diagnosis difficult and frequently delayed. A functional neuroendocrine tumour should be suspected when diarrhoea is unusually extreme, prolonged and common causes have been promptly excluded.

  • These patients are likely to be profoundly unwell on presentation. They are extremely hypovolaemic with dangerous electrolyte and metabolic abnormalities. Aggressive initial rehydration and electrolyte replacement are imperative. A somatostatin analogue should be commenced as soon as the diagnosis is suspected.

  • This is an extreme example of Verner–Morrison syndrome. We are unaware of another case where renal failure secondary to diarrhoea and dehydration was so severe that renal replacement therapy was required to restore adequate renal function, further emphasising how critically unwell these patients can be.

  • Both the primary tumour and metastases showed a remarkably good and rapid response to somatostatin analogue administration. Cystic change and involution were noted on repeat imaging within days.

  • Prior to his illness, this patient was extremely high functioning with no medical history. His diagnosis was an enormous psychological shock, and the consideration and care for his psychological well-being were a crucial part of his overall management. It highlights the importance of a holistic approach to cancer care and the role of the clinical nurse specialist within the cancer multidisciplinary team.

Open access

Jenny S W Yun, Chris McCormack, Michelle Goh, and Cherie Chiang

Summary

Acanthosis nigricans (AN) is a common dermatosis associated with hyperinsulinemia and insulin resistance. However, AN has been rarely reported in patients with insulinoma, a state of persistent hyperinsulinemia. We present a case of metastatic insulinoma, in whom AN manifested after the first cycle of peptide receptor radionuclide therapy (PRRT). A 40-year-old man was diagnosed with metastatic insulinoma after 5 months of symptomatic hypoglycemia. Within 1 month post PRRT, the patient became euglycemic but developed a pigmented, pruritic rash which was confirmed on biopsy as AN. We discuss the rare manifestation of AN in subjects with insulinoma, the role of insulin in the pathogenesis of AN, malignant AN in non-insulin-secreting malignancies and association with other insulin-resistant endocrinopathies such as acromegaly.

Learning points

  • Acanthosis nigricans (AN) is a common dermatosis which is typically asymptomatic and associated with the hyperinsulinemic state.

  • Malignant AN can rapidly spread, cause pruritus and affect mucosa and the oral cavity.

  • AN is extremely rare in patients with insulinoma despite marked hyperinsulinemia.

  • Peptide receptor radionuclide therapy might have triggered TGF-α secretion in this subject which led to malignant AN.

  • Rapid spread or unusual distribution of pruritic AN warrants further investigation to exclude underlying malignancy.

Open access

Adrian Po Zhu Li, Sheela Sathyanarayan, Salvador Diaz-Cano, Sobia Arshad, Eftychia E Drakou, Royce P Vincent, Ashley B Grossman, Simon J B Aylwin, and Georgios K Dimitriadis

Summary

A 49-year-old teacher presented to his general physician with lethargy and lower limb weakness. He had noticed polydipsia, polyuria, and had experienced weight loss, albeit with an increase in central adiposity. He had no concomitant illnesses and took no regular medications. He had hypercalcaemia (adjusted calcium: 3.34 mmol/L) with hyperparathyroidism (parathyroid hormone: 356 ng/L) and hypokalaemia (K: 2.7 mmol/L) and was admitted for i.v. potassium replacement. A contrast-enhanced CT chest/abdomen/pelvis scan revealed a well-encapsulated anterior mediastinal mass measuring 17 × 11 cm with central necrosis, compressing rather than invading adjacent structures. A neck ultrasound revealed a 2 cm right inferior parathyroid lesion. On review of CT imaging, the adrenals appeared normal, but a pancreatic lesion was noted adjacent to the uncinate process. His serum cortisol was 2612 nmol/L, and adrenocorticotrophic hormone was elevated at 67 ng/L, followed by inadequate cortisol suppression to 575 nmol/L from an overnight dexamethasone suppression test. His pituitary MRI was normal, with unremarkable remaining anterior pituitary biochemistry. His admission was further complicated by increased urine output to 10 L/24 h and despite three precipitating factors for the development of diabetes insipidus including hypercalcaemia, hypokalaemia, and hypercortisolaemia, due to academic interest, a water deprivation test was conducted. An 18flurodeoxyglucose-PET (FDG-PET) scan demonstrated high avidity of the mediastinal mass with additionally active bilateral superior mediastinal nodes. The pancreatic lesion was not FDG avid. On 68Ga DOTATE-PET scan, the mediastinal mass was moderately avid, and the 32 mm pancreatic uncinate process mass showed significant uptake. Genetic testing confirmed multiple endocrine neoplasia type 1.

Learning points

  • In young patients presenting with primary hyperparathyroidism, clinicians should be alerted to the possibility of other underlying endocrinopathies.

    In patients with multiple endocrine neoplasia type 1 (MEN-1) and ectopic adrenocorticotrophic hormone syndrome (EAS), clinicians should be alerted to the possibility of this originating from a neoplasm above or below the diaphragm.

  • Although relatively rare compared with sporadic cases, thymic carcinoids secondary to MEN-1 may also be associated with EAS.

  • Electrolyte derangement, in particular hypokalaemia and hypercalcaemia, can precipitate mild nephrogenic diabetes insipidus.

Open access

Vinaya Srirangam Nadhamuni, Donato Iacovazzo, Jane Evanson, Anju Sahdev, Jacqueline Trouillas, Lorraine McAndrew, Tom R Kurzawinski, David Bryant, Khalid Hussain, Satya Bhattacharya, and Márta Korbonits

Summary

A male patient with a germline mutation in MEN1 presented at the age of 18 with classical features of gigantism. Previously, he had undergone resection of an insulin-secreting pancreatic neuroendocrine tumour (pNET) at the age of 10 years and had subtotal parathyroidectomy due to primary hyperparathyroidism at the age of 15 years. He was found to have significantly elevated serum IGF-1, GH, GHRH and calcitonin levels. Pituitary MRI showed an overall bulky gland with a 3 mm hypoechoic area. Abdominal MRI showed a 27 mm mass in the head of the pancreas and a 6 mm lesion in the tail. Lanreotide-Autogel 120 mg/month reduced GHRH by 45% and IGF-1 by 20%. Following pancreaticoduodenectomy, four NETs were identified with positive GHRH and calcitonin staining and Ki-67 index of 2% in the largest lesion. The pancreas tail lesion was not removed. Post-operatively, GHRH and calcitonin levels were undetectable, IGF-1 levels normalised and GH suppressed normally on glucose challenge. Post-operative fasting glucose and HbA1c levels have remained normal at the last check-up. While adolescent-onset cases of GHRH-secreting pNETs have been described, to the best of our knowledge, this is the first reported case of ectopic GHRH in a paediatric setting leading to gigantism in a patient with MEN1. Our case highlights the importance of distinguishing between pituitary and ectopic causes of gigantism, especially in the setting of MEN1, where paediatric somatotroph adenomas causing gigantism are extremely rare.

Learning points

  • It is important to diagnose gigantism and its underlying cause (pituitary vs ectopic) early in order to prevent further growth and avoid unnecessary pituitary surgery. The most common primary tumour sites in ectopic acromegaly include the lung (53%) and the pancreas (34%) (): 76% of patients with a pNET secreting GHRH showed a MEN1 mutation ().

  • Plasma GHRH testing is readily available in international laboratories and can be a useful diagnostic tool in distinguishing between pituitary acromegaly mediated by GH and ectopic acromegaly mediated by GHRH. Positive GHRH immunostaining in the NET tissue confirms the diagnosis.

  • Distinguishing between pituitary (somatotroph) hyperplasia secondary to ectopic GHRH and pituitary adenoma is difficult and requires specialist neuroradiology input and consideration, especially in the MEN1 setting. It is important to note that the vast majority of GHRH-secreting tumours (lung, pancreas, phaeochromocytoma) are expected to be visible on cross-sectional imaging (median diameter 55 mm) (). Therefore, we suggest that a chest X-ray and an abdominal ultrasound checking the adrenal glands and the pancreas should be included in the routine work-up of newly diagnosed acromegaly patients.

Open access

Anthony Ramos-Yataco, Kelly Meza, Reyna Cecilia Farfán-García, Solange Ortega-Rojas, Isaac Salinas-Mamani, Ivonne Silva-Arrieta Ontaneda, and Ricardo Correa

Summary

The first case of the novel coronavirus infection (COVID-19) in Peru was reported on March 6, 2020. As of September 7, 2020, about 700 000 cases of COVID-19 resulting in 29,976 deaths have been confirmed by the Ministry of Health. Among COVID-19 patients with co-morbidities, type 2 diabetes mellitus (T2DM) has been recognized as a risk factor for severe disease. Patients with T2DM may experience diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic (HHS) if infected with the coronavirus 2 (SARS-CoV-2). Regular blood analysis including arterial blood gas is essential in monitoring the care of patients with T2DM infected with COVID-19. We report five cases of DKA in patients with underlying T2DM that presented with severe COVID-19 infection.

Learning points:

  • COVID-19 may cause acute metabolic dysregulations in patients with T2DM.

  • It is important to monitor basic metabolic panel (BMP) and arterial blood gases (ABGs) in patients with COVID-19 since metabolic complications can develop unexpectedly.

  • Patients with T2DM develop an inflammatory syndrome characterized by severe insulin resistance and B cell dysfunction that can lead to DKA.