Browse

You are looking at 1 - 2 of 2 items for :

  • Idiopathic bilateral adrenal hyperplasia x
Clear All
Open access

Teresa Rego, Fernando Fonseca, Stéphanie Espiard, Karine Perlemoine, Jérôme Bertherat and Ana Agapito

Summary

PBMAH is a rare etiology of Cushing syndrome (CS). Familial clustering suggested a genetic cause that was recently confirmed, after identification of inactivating germline mutations in armadillo repeat-containing 5 (ARMC5) gene. A 70-year-old female patient was admitted due to left femoral neck fracture in May 2014, in Orthopedics Department. During hospitalization, hypertension (HTA) and hypokalemia were diagnosed. She presented with clinical signs of hypercortisolism and was transferred to the Endocrinology ward for suspected CS. Laboratory workup revealed: ACTH <5 pg/mL; urinary free cortisol (UFC), 532 µg/24 h (normal range: 20–90); failure to suppress the low-dose dexamethasone test (0.5 mg every 6 h for 48 h): cortisol 21 µg/dL. Abdominal magnetic resonance imaging (MRI) showed enlarged nodular adrenals (right, 55 × 54 × 30 mm; left, 85 × 53 × 35 mm), and she was submitted to bilateral adrenalectomy. In 2006, this patient’s 39-year-old daughter had been treated by one of the authors. She presented with severe clinical and biological hypercortisolism. Computed tomography (CT) scan showed massively enlarged nodular adrenals with maximal axis of 15 cm for both. Bilateral adrenalectomy was performed. In this familial context of PBMAH, genetic study was performed. Leucocyte DNA genotyping identified in both patients the same germline heterozygous ARMC5 mutation in exon 1 c.172_173insA p.I58Nfs*45. The clinical cases herein described have an identical phenotype with severe hypercortisolism and huge adrenal glands, but different ages at the time of diagnosis. Current knowledge of inheritance of this disease, its insidious nature and the well-known deleterious effect of hypercortisolism favor genetic study to timely identify and treat these patients.

Learning points:

  • PBMAH is a rare etiology of CS, characterized by functioning adrenal macronodules and variable cortisol secretion.
  • The asymmetric/asynchronous involvement of only one adrenal gland can also occur, making disease diagnosis a challenge.
  • Familial clustering suggests a genetic cause that was recently confirmed, after identification of inactivating germline mutations in armadillo repeat-containing 5 (ARMC5) gene.
  • The insidious nature of this disease and the well-known deleterious effect of hypercortisolism favor genetic study of other family members, to diagnose and treat these patients timely.
  • As ARMC5 is expressed in many organs and recent findings suggest an association of PBMAH and meningioma, a watchful follow-up is required.
Open access

V Larouche, L Snell and D V Morris

Summary

Myxoedema madness was first described as a consequence of severe hypothyroidism in 1949. Most cases were secondary to long-standing untreated primary hypothyroidism. We present the first reported case of iatrogenic myxoedema madness following radioactive iodine ablation for Graves' disease, with a second concurrent diagnosis of primary hyperaldosteronism. A 29-year-old woman presented with severe hypothyroidism, a 1-week history of psychotic behaviour and paranoid delusions 3 months after treatment with radioactive iodine ablation for Graves' disease. Her psychiatric symptoms abated with levothyroxine replacement. She was concurrently found to be hypertensive and hypokalemic. Primary hyperaldosteronism from bilateral adrenal hyperplasia was diagnosed. This case report serves as a reminder that myxoedema madness can be a complication of acute hypothyroidism following radioactive iodine ablation of Graves' disease and that primary hyperaldosteronism may be associated with autoimmune hyperthyroidism.

Learning points

  • Psychosis (myxoedema madness) can present as a neuropsychiatric manifestation of acute hypothyroidism following radioactive iodine ablation of Graves' disease.
  • Primary hyperaldosteronism may be caused by idiopathic bilateral adrenal hyperplasia even in the presence of an adrenal adenoma seen on imaging.
  • Adrenal vein sampling is a useful tool for differentiating between a unilateral aldosterone-producing adenoma, which is managed surgically, and an idiopathic bilateral adrenal hyperplasia, which is managed medically.
  • The management of autoimmune hyperthyroidism, iatrogenic hypothyroidism and primary hyperaldosteronism from bilateral idiopathic adrenal hyperplasia in patients planning pregnancy includes delaying pregnancy 6 months following radioactive iodine treatment and until patient is euthyroid for 3 months, using amiloride as opposed to spironolactone, controlling blood pressure with agents safe in pregnancy such as nifedipine and avoiding β blockers.
  • Autoimmune hyperthyroidism and primary hyperaldosteronism rarely coexist; any underlying mechanism associating the two is still unclear.