Browse

You are looking at 1 - 9 of 9 items for :

  • Country of Treatment x
  • Hyperthyroidism x
  • Thyroid function x
Clear All
Open access

Hui Yi Ng, Divya Namboodiri, Diana Learoyd, Andrew Davidson, Bernard Champion and Veronica Preda

Summary

Co-secreting thyrotropin/growth hormone (GH) pituitary adenomas are rare; their clinical presentation and long-term management are challenging. There is also a paucity of long-term data. Due to the cell of origin, these can behave as aggressive tumours. We report a case of a pituitary plurihormonal pit-1-derived macroadenoma, with overt clinical hyperthyroidism and minimal GH excess symptoms. The diagnosis was confirmed by pathology showing elevated thyroid and GH axes with failure of physiological GH suppression, elevated pituitary glycoprotein hormone alpha subunit (αGSU) and macroadenoma on imaging. Pre-operatively the patient was rendered euthyroid with carbimazole and underwent successful transphenoidal adenomectomy (TSA) with surgical cure. Histopathology displayed an elevated Ki-67 of 5.2%, necessitating long-term follow-up.

Learning points:

  • Thyrotropinomas are rare and likely under-diagnosed due to under-recognition of secondary hyperthyroidism.

  • Thyrotropinomas and other plurihormonal pit-1-derived adenomas are more aggressive adenomas according to WHO guidelines.

  • Co-secretion occurs in 30% of thyrotropinomas, requiring diligent investigation and long-term follow-up of complications.

Open access

Jose León Mengíbar, Ismael Capel, Teresa Bonfill, Isabel Mazarico, Laia Casamitjana Espuña, Assumpta Caixàs and Mercedes Rigla

Summary

Durvalumab, a human immunoglobulin G1 kappa monoclonal antibody that blocks the interaction of programmed cell death ligand 1 (PD-L1) with the PD-1 and CD80 (B7.1) molecules, is increasingly used in advanced neoplasias. Durvalumab use is associated with increased immune-related adverse events. We report a case of a 55-year-old man who presented to our emergency room with hyperglycaemia after receiving durvalumab for urothelial high-grade non-muscle-invasive bladder cancer. On presentation, he had polyuria, polyphagia, nausea and vomiting, and laboratory test revealed diabetic ketoacidosis (DKA). Other than durvalumab, no precipitating factors were identified. Pre-durvalumab blood glucose was normal. The patient responded to treatment with intravenous fluids, insulin and electrolyte replacement. Simultaneously, he presented a thyroid hormone pattern that evolved in 10 weeks from subclinical hyperthyroidism (initially attributed to iodinated contrast used in a previous computerised tomography) to overt hyperthyroidism and then to severe primary hypothyroidism (TSH: 34.40 µU/mL, free thyroxine (FT4): <0.23 ng/dL and free tri-iodothyronine (FT3): 0.57 pg/mL). Replacement therapy with levothyroxine was initiated. Finally, he was tested positive for anti-glutamic acid decarboxylase (GAD65), anti-thyroglobulin (Tg) and antithyroid peroxidase (TPO) antibodies (Abs) and diagnosed with type 1 diabetes mellitus (DM) and silent thyroiditis caused by durvalumab. When durvalumab was stopped, he maintained the treatment of multiple daily insulin doses and levothyroxine. Clinicians need to be alerted about the development of endocrinopathies, such as DM, DKA and primary hypothyroidism in the patients receiving durvalumab.

Learning points:

  • Patients treated with anti-PD-L1 should be screened for the most common immune-related adverse events (irAEs).

  • Glucose levels and thyroid function should be monitored before and during the treatment.

  • Durvalumab is mainly associated with thyroid and endocrine pancreas dysfunction.

  • In the patients with significant autoimmune background, risk–benefit balance of antineoplastic immunotherapy should be accurately assessed.

Open access

Laura Hamilton Adams and Derick Adams

Summary

Co-secreting TSH and growth hormone pituitary adenomas are rare. We present a case of a 55-year-old woman who presented with symptoms of neck fullness. Ultrasound revealed multiple thyroid nodules and examination revealed several clinical features of acromegaly. She was found to have a co-secreting TSH and growth hormone pituitary macroadenoma. She underwent surgical resection followed by gamma knife radiation, which resulted in complete remission of her TSH and GH-secreting adenoma.

Learning points:

  • TSH-secreting pituitary adenomas are rare and about one-third co-secrete other hormones.

  • Thyroid nodules are common in acromegaly and can be the presenting sign of a growth hormone-secreting pituitary adenoma.

  • In the workup of acromegaly, assessment of other pituitary hormones is essential, even in the absence of symptoms of other pituitary hormone dysfunction.

  • Complete remission of co-secreting GH and TSH pituitary macroadenomas is possible with surgery and radiation alone.

Open access

Ehtasham Ahmad, Kashif Hafeez, Muhammad Fahad Arshad, Jimboy Isuga and Apostolos Vrettos

Summary

Primary hypothyroidism is a common endocrine condition, most commonly caused by autoimmune thyroiditis (Hashimoto’s disease) while Graves’ disease is the most common cause of hyperthyroidism. Hypothyroidism is usually a permanent condition in most patients requiring lifelong levothyroxine treatment. Transformation from Hashimoto’s disease to Graves’ disease is considered rare but recently been increasingly recognised. We describe a case of a 61-year-old lady who was diagnosed with hypothyroidism approximately three decades ago and treated with levothyroxine replacement therapy. Approximately 27 years after the initial diagnosis of hypothyroidism, she started to become biochemically and clinically hyperthyroid. This was initially managed with gradual reduction in the dose of levothyroxine, followed by complete cessation of the medication, but she remained hyperthyroid, ultimately requiring anti-thyroid treatment with Carbimazole. This case highlights that there should be a high index of suspicion for a possible conversion of hypothyroidism to hyperthyroidism, even many years after the initial diagnosis of hypothyroidism. To our knowledge, this case illustrates the longest reported time interval between the diagnosis of hypothyroidism until the conversion to hyperthyroidism.

Learning points:

  • Occurrence of Graves’ disease after primary hypothyroidism is uncommon but possible.

  • In this case, there was a time-lapse of almost 28 years and therefore this entity may not be as rare as previously thought.

  • Diagnosis requires careful clinical and biochemical assessment. Otherwise, the case can be easily confused for over-replacement of levothyroxine.

  • We suggest measuring both anti-thyroid peroxidase (TPO) antibodies and TSH receptor antibodies (TRAB) in suspected cases.

  • The underlying aetiology for the conversion is not exactly known but probably involves autoimmune switch by an external stimulus in genetically susceptible individuals.

Open access

R D’Arcy, M McDonnell, K Spence and C H Courtney

Summary

A 42-year-old male presented with a one-week history of palpitations and sweating episodes. The only significant history was of longstanding idiopathic dilated cardiomyopathy. Initial ECG demonstrated a sinus tachycardia. Thyroid function testing, undertaken as part of the diagnostic workup, revealed an un-measureable thyroid-stimulating hormone (TSH) and free thyroxine (T4). Upon questioning the patient reported classical thyrotoxic symptoms over the preceding weeks. Given the persistence of symptoms free tri-iodothyronine (T3) was measured and found to be markedly elevated at 48.9 pmol/L (normal range: 3.1–6.8 pmol/L). No goitre or nodular disease was palpable in the neck. Historically there had never been any amiodarone usage. Radionucleotide thyroid uptake imaging (123I) demonstrated significantly reduced tracer uptake in the thyroid. Upon further questioning the patient reported purchasing a weight loss product online from India which supposedly contained sibutramine. He provided one of the tablets and laboratory analysis confirmed the presence of T3 in the tablet. Full symptomatic resolution and normalised thyroid function ensued upon discontinuation of the supplement.

Learning points:

  • Free tri-iodothyronine (T3) measurement may be useful in the presence of symptoms suggestive of thyrotoxicosis with discordant thyroid function tests.

  • Thyroid uptake scanning can be a useful aid to differentiating exogenous hormone exposure from endogenous hyperthyroidism.

  • Ingestion of thyroid hormone may be inadvertent in cases of exogenous thyrotoxicosis.

  • Medicines and supplements sourced online for weight loss may contain thyroxine (T4) or T3 and should be considered as a cause of unexplained exogenous hyperthyroidism.

Open access

Guadalupe Vargas, Lourdes-Josefina Balcazar-Hernandez, Virgilio Melgar, Roser-Montserrat Magriña-Mercado, Baldomero Gonzalez, Javier Baquera and Moisés Mercado

A 19-year-old woman with a history of isosexual precocious puberty and bilateral oophorectomy at age 10 years because of giant ovarian cysts, presents with headaches and mild symptoms and signs of hyperthyroidism. Hormonal evaluation revealed elevated FSH and LH levels in the postmenopausal range and free hyperthyroxinemia with an inappropriately normal TSH. Pituitary MRI showed a 2-cm macroadenoma with suprasellar extension. She underwent successful surgical resection of the pituitary tumor, which proved to be composed of two distinct populations of cells, each of them strongly immunoreactive for FSH and TSH, respectively. This mixed adenoma resulted in two different hormonal hypersecretion syndromes: the first one during childhood and consisting of central precocious puberty and ovarian hyperstimulation due to the excessive secretion of biologically active FSH and which was not investigated in detail and 10 years later, central hyperthyroidism due to inappropriate secretion of biologically active TSH. Although infrequent, two cases of isosexual central precocious puberty in girls due to biologically active FSH secreted by a pituitary adenoma have been previously reported in the literature. However, this is the first reported case of a mixed adenoma capable of secreting both, biologically active FSH and TSH.

Learning points:

  • Although functioning gonadotrophinomas are infrequent, they should be included in the differential diagnosis of isosexual central precocious puberty.

  • Some functioning gonadotrophinomas are mixed adenomas, secreting other biologically active hormones besides FSH, such as TSH.

  • Early recognition and appropriate treatment of these tumors by transsphenoidal surgery is crucial in order to avoid unnecessary therapeutic interventions that may irreversibly compromise gonadal function.

Open access

Julian Choi, Perin Suthakar and Farbod Farmand

Summary

We describe the case of a young Hispanic female who presented with thyrotoxicosis with seizures and ischemic stroke. She was diagnosed with a rare vasculopathy – moyamoya syndrome. After starting antithyroid therapy, her neurologic symptoms did not improve. Acute neurosurgical intervention had relieved her symptoms in the immediate post-operative period after re-anastomosis surgery. However, 2 post-operative days later, she was found to be in status epilepticus and in hyperthyroid state. She quickly deteriorated clinically and had expired a few days afterward. This is the second case in literature of a fatality in a patient with moyamoya syndrome and Graves’ disease. However, unlike the other case report, our patient had undergone successful revascularization surgery. We believe her underlying non-euthyroid state had potentiated her clinical deterioration. Case studies have shown positive correlation between uncontrolled hyperthyroidism and stroke-like symptoms in moyamoya syndrome. Mostly all patients with these two disease processes become symptomatic in marked hyperthyroid states. Thus, it may be either fluctuations in baseline thyroid function or thyrotoxicosis that potentiate otherwise asymptomatic moyamoya vasculopathy.

Learning points:

  • Awareness of the association between Graves’ disease and moyamoya syndrome in younger patients presenting with stroke-like symptoms.

  • Obtaining euthyroid states before undergoing revascularization surgery may protect the patient from perioperative mortality and morbidity.

  • Although moyamoya disease is usually thought to be genetically associated, there are reports that thyroid antibodies may play a role in its pathogenesis and have an autoimmune link.

  • Fluctuations in baseline thyroid function for patients with known Graves’ disease may be a potentiating factor in exacerbating moyamoya vasculopathy.

Open access

Ling Zhu, Sueziani Binte Zainudin, Manish Kaushik, Li Yan Khor and Chiaw Ling Chng

Summary

Type II amiodarone-induced thyrotoxicosis (AIT) is an uncommon cause of thyroid storm. Due to the rarity of the condition, little is known about the role of plasma exchange in the treatment of severe AIT. A 56-year-old male presented with thyroid storm 2months following cessation of amiodarone. Despite conventional treatment, his condition deteriorated. He underwent two cycles of plasma exchange, which successfully controlled the severe hyperthyroidism. The thyroid hormone levels continued to fall up to 10h following plasma exchange. He subsequently underwent emergency total thyroidectomy and the histology of thyroid gland confirmed type II AIT. Management of thyroid storm secondary to type II AIT can be challenging as patients may not respond to conventional treatments, and thyroid storm may be more harmful in AIT patients owing to the underlying cardiac disease. If used appropriately, plasma exchange can effectively reduce circulating hormones, to allow stabilisation of patients in preparation for emergency thyroidectomy.

Learning points

  • Type II AIT is an uncommon cause of thyroid storm and may not respond well to conventional thyroid storm treatment.

  • Prompt diagnosis and therapy are important, as patients may deteriorate rapidly.

  • Plasma exchange can be used as an effective bridging therapy to emergency thyroidectomy.

  • This case shows that in type II AIT, each cycle of plasma exchange can potentially lower free triiodothyronine levels for 10h.

  • Important factors to consider when planning plasma exchange as a treatment for thyroid storm include timing of each session, type of exchange fluid to be used and timing of surgery.

Open access

Luísa Correia Martins, Ana Rita Coutinho, Mónica Jerónimo, Joana Serra Caetano, Rita Cardoso, Isabel Dinis and Alice Mirante

Summary

Alternating between hyper- and hypo-thyroidism may be explained by the simultaneous presence of both types of TSH receptor autoantibodies (TRAbs) – thyroid stimulating autoantibodies (TSAbs) and TSH blocking autoantibodies (TBAbs). It is a very rare condition, particulary in the pediatric age. The clinical state of these patients is determined by the balance between TSAbs and TBAbs and can change over time. Many mechanisms may be involved in fluctuating thyroid function: hormonal supplementation, antithyroid drugs and levels of TSAbs and TBAbs. Frequent dose adjustments are needed in order to achieve euthyroidism. A definitive therapy may be necessary to avoid switches in thyroid function and frequent need of therapeutic changes. We describe an immune-mediated case of oscillating thyroid function in a 13-year-old adolescent. After a short period of levothyroxine treatment, the patient switched to a hyperthyroid state that was only controlled by adding an antithyroid drug.

Learning points

  • Autoimmune alternating hypo- and hyper-thyroidism is a highly uncommon condition in the pediatric age.

  • It may be due to the simultaneous presence of both TSAbs and TBAbs, whose activity may be estimated in vitro through bioassays.

  • The clinical state of these patients is determined by the balance between TSAbs and TBAbs and can change over time.

  • The management of this condition is challenging, and three therapeutic options could be considered: I-131 ablation, thyroidectomy or pharmacological treatment (single or double therapy).

  • Therapeutic decisions should be taken according to clinical manifestations and thyroid function tests, independent of the bioassays results.

  • A definitive treatment might be considered due to the frequent switches in thyroid function and the need for close monitoring of pharmacological treatment. A definitive treatment might be considered due to the frequent switches in thyroid function and the need for close monitoring of pharmacological treatment.