Browse

You are looking at 1 - 4 of 4 items for :

  • Serum osmolality x
  • Haemoglobin A1c x
Clear All
Open access

Sebastian Hörber, Sarah Hudak, Martin Kächele, Dietrich Overkamp, Andreas Fritsche, Hans-Ulrich Häring, Andreas Peter and Martin Heni

Summary

Diabetic ketoacidosis is a life-threatening complication of diabetes mellitus. It usually occurs in patients with type 1 diabetes where it is typically associated with only moderately increased blood glucose. Here, we report the case of a 52-year-old female patient who was admitted to the emergency unit with severely altered mental status but stable vital signs. Laboratory results on admission revealed very high blood glucose (1687 mg/dL/93.6 mmol/L) and severe acidosis (pH <7) with proof of ketone bodies in serum and urine. Past history revealed a paranoid schizophrenia diagnosed 10 years ago and for which the patient was treated with risperidone for many years. Acute treatment with intravenous fluids, intravenous insulin infusion and sodium bicarbonate improved the symptoms. Further laboratory investigations confirmed diagnosis of autoimmune type 1 diabetes. After normalization of blood glucose levels, the patient could soon be discharged with a subcutaneous insulin therapy.

Learning points:

  • Diabetic ketoacidosis as first manifestation of type 1 diabetes can occur with markedly elevated blood glucose concentrations in elder patients.

  • Atypical antipsychotics are associated with hyperglycemia and an increased risk of new-onset diabetes.

  • First report of risperidone-associated diabetic ketoacidosis in new-onset type 1 diabetes.

  • Patients treated with atypical antipsychotics require special care and regular laboratory examinations to detect hyperglycemia and diabetic ketoacidosis.

  • In cases when the diagnosis is in doubt, blood gas analysis as well as determination of C-peptide and islet autoantibodies can help to establish the definite diabetes type.

Open access

Snezana Burmazovic, Christoph Henzen, Lukas Brander and Luca Cioccari

Summary

The combination of hyperosmolar hyperglycaemic state and central diabetes insipidus is unusual and poses unique diagnostic and therapeutic challenges for clinicians. In a patient with diabetes mellitus presenting with polyuria and polydipsia, poor glycaemic control is usually the first aetiology that is considered, and achieving glycaemic control remains the first course of action. However, severe hypernatraemia, hyperglycaemia and discordance between urine-specific gravity and urine osmolality suggest concurrent symptomatic diabetes insipidus. We report a rare case of concurrent manifestation of hyperosmolar hyperglycaemic state and central diabetes insipidus in a patient with a history of craniopharyngioma.

Learning points:

  • In patients with diabetes mellitus presenting with polyuria and polydipsia, poor glycaemic control is usually the first aetiology to be considered.

  • However, a history of craniopharyngioma, severe hypernatraemia, hyperglycaemia and discordance between urine-specific gravity and osmolality provide evidence of concurrent diabetes insipidus.

  • Therefore, if a patient with diabetes mellitus presents with severe hypernatraemia, hyperglycaemia, a low or low normal urinary-specific gravity and worsening polyuria despite correction of hyperglycaemia, concurrent diabetes insipidus should be sought.

Open access

Joseph Cerasuolo and Anthony Izzo

Summary

Acute hyperglycemia has been shown to cause cognitive impairments in animal models. There is growing appreciation of the numerous effects of hyperglycemia on neuronal function as well as blood–brain barrier function. In humans, hypoglycemia is well known to cause cognitive deficits acutely, but hyperglycemia has been less well studied. We present a case of selective neurocognitive deficits in the setting of acute hyperglycemia. A 60-year-old man was admitted to the hospital for an episode of acute hyperglycemia in the setting of newly diagnosed diabetes mellitus precipitated by steroid use. He was managed with insulin therapy and discharged home, and later, presented with complaints of memory impairment. Deficits included impairment in his declarative and working memory, to the point of significant impairment in his overall functioning. The patient had no structural lesions on MRI imaging of the brain or other systemic illnesses to explain his specific deficits. We suggest that his acute hyperglycemia may have caused neurological injury, and may be responsible for our patient’s memory complaints.

Learning points:

  • Acute hyperglycemia has been associated with poor outcomes in several different central nervous system injuries including cerebrovascular accident and hypoxic injury.

  • Hyperglycemia is responsible for accumulation of reactive oxygen species in the brain, resulting in advanced glycosylated end products and a proinflammatory response that may lead to cellular injury.

  • Further research is needed to define the impact of both acute and chronic hyperglycemia on cognitive impairment and memory.

Open access

Pedro Marques, Kavinga Gunawardana and Ashley Grossman

Summary

Gestational diabetes insipidus (DI) is a rare complication of pregnancy, usually developing in the third trimester and remitting spontaneously 4–6 weeks post-partum. It is mainly caused by excessive vasopressinase activity, an enzyme expressed by placental trophoblasts which metabolises arginine vasopressin (AVP). Its diagnosis is challenging, and the treatment requires desmopressin. A 38-year-old Chinese woman was referred in the 37th week of her first single-gestation due to polyuria, nocturia and polydipsia. She was known to have gestational diabetes mellitus diagnosed in the second trimester, well-controlled with diet. Her medical history was unremarkable. Physical examination demonstrated decreased skin turgor; her blood pressure was 102/63 mmHg, heart rate 78 beats/min and weight 53 kg (BMI 22.6 kg/m2). Laboratory data revealed low urine osmolality 89 mOsmol/kg (350–1000), serum osmolality 293 mOsmol/kg (278–295), serum sodium 144 mmol/l (135–145), potassium 4.1 mmol/l (3.5–5.0), urea 2.2 mmol/l (2.5–6.7), glucose 3.5 mmol/l and HbA1c 5.3%. Bilirubin, alanine transaminase, alkaline phosphatase and full blood count were normal. The patient was started on desmopressin with improvement in her symptoms, and normalisation of serum and urine osmolality (280 and 310 mOsmol/kg respectively). A fetus was delivered at the 39th week without major problems. After delivery, desmopressin was stopped and she had no further evidence of polyuria, polydipsia or nocturia. Her sodium, serum/urine osmolality at 12-weeks post-partum were normal. A pituitary magnetic resonance imaging (MRI) revealed the neurohypophyseal T1-bright spot situated ectopically, with a normal adenohypophysis and infundibulum. She remains clinically well, currently breastfeeding, and off all medication. This case illustrates some challenges in the diagnosis and management of transient gestational DI.

Learning points

  • Gestational DI is a rare complication of pregnancy occurring in two to four out of 100 000 pregnancies. It usually develops at the end of the second or third trimester of pregnancy and remits spontaneously 4–6 weeks after delivery.

  • Gestational DI occurrence is related to excessive vasopressinase activity, an enzyme expressed by placental trophoblasts during pregnancy, which metabolises AVP. Its activity is proportional to the placental weight, explaining the higher vasopressinase activity in third trimester or in multiple pregnancies.

  • Vasopressinase is metabolised by the liver, which most likely explains its higher concentrations in pregnant women with hepatic dysfunction, such acute fatty liver of pregnancy, HELLP syndrome, hepatitis and cirrhosis. Therefore, it is important to assess liver function in patients with gestational DI, and to be aware of the risk of DI in pregnant women with liver disease.

  • Serum and urine osmolality are essential for the diagnosis, but other tests such as serum sodium, glucose, urea, creatinine, liver function may be informative. The water deprivation test is normally not recommended during pregnancy because it may lead to significant dehydration, but a pituitary MRI should be performed at some point to exclude lesions in the hypothalamo-pituitary region.

  • These patients should be monitored for vital signs, fluid balance, body weight, fetal status, renal and liver function, and treated with desmopressin. The recommended doses are similar or slightly higher than those recommended for central DI in non-pregnant women, and should be titrated individually.