Browse

You are looking at 1 - 5 of 5 items for :

  • Glucocorticoids x
Clear All
Open access

Matthieu St-Jean, Jessica MacKenzie-Feder, Isabelle Bourdeau and André Lacroix

Summary

A 29-year-old G4A3 woman presented at 25 weeks of pregnancy with progressive signs of Cushing’s syndrome (CS), gestational diabetes requiring insulin and hypertension. A 3.4 × 3.3 cm right adrenal adenoma was identified during abdominal ultrasound imaging for nephrolithiasis. Investigation revealed elevated levels of plasma cortisol, 24 h urinary free cortisol (UFC) and late-night salivary cortisol (LNSC). Serum ACTH levels were not fully suppressed (4 and 5 pmol/L (N: 2–11)). One month post-partum, CS regressed, 24-h UFC had normalised while ACTH levels were now less than 2 pmol/L; however, dexamethasone failed to suppress cortisol levels. Tests performed in vivo 6 weeks post-partum to identify aberrant hormone receptors showed no cortisol stimulation by various tests (including 300 IU hLH i.v.) except after administration of 250 µg i.v. Cosyntropin 1–24. Right adrenalectomy demonstrated an adrenocortical adenoma and atrophy of adjacent cortex. Quantitative RT-PCR analysis of the adenoma revealed the presence of ACTH (MC2) receptor mRNA, while LHCG receptor mRNA was almost undetectable. This case reveals that CS exacerbation in the context of pregnancy can result from the placental-derived ACTH stimulation of MC2 receptors on the adrenocortical adenoma. Possible contribution of other placental-derived factors such as oestrogens, CRH or CRH-like peptides cannot be ruled out.

Learning points:

  • Diagnosis of Cushing’s syndrome during pregnancy is complicated by several physiological alterations in hypothalamic–pituitary–adrenal axis regulation occurring in normal pregnancy.

  • Cushing’s syndrome (CS) exacerbation during pregnancy can be associated with aberrant expression of LHCG receptor on primary adrenocortical tumour or hyperplasia in some cases, but not in this patient.

  • Placental-derived ACTH, which is not subject to glucocorticoid negative feedback, stimulated cortisol secretion from this adrenal adenoma causing transient CS exacerbation during pregnancy.

  • Following delivery and tumour removal, suppression of HPA axis can require several months to recover and requires glucocorticoid replacement therapy.

Open access

Diana Oliveira, Mara Ventura, Miguel Melo, Sandra Paiva and Francisco Carrilho

Summary

Addison’s disease (AD) is the most common endocrine manifestation of antiphospholipid syndrome (APS), but it remains a very rare complication of the syndrome. It is caused by adrenal venous thrombosis and consequent hemorrhagic infarction or by spontaneous (without thrombosis) adrenal hemorrhage, usually occurring after surgery or anticoagulant therapy. We present a clinical case of a 36-year-old female patient with a previous diagnosis of APS. She presented with multiple thrombotic events, including spontaneous abortions. During evaluation by the third episode of abortion, a CT imaging revealed an adrenal hematoma, but the patient was discharged without further investigation. A few weeks later, she presented in the emergency department with manifestations suggestive of adrenal insufficiency. Based on that assumption, she started therapy with glucocorticoids, with significant clinical improvement. After stabilization, additional investigation confirmed AD and excluded other etiologies; she also started mineralocorticoid replacement. This case illustrates a rare complication of APS that, if misdiagnosed, may be life threatening. A high index of suspicion is necessary for its diagnosis, and prompt treatment is crucial to reduce the morbidity and mortality potentially associated.

Learning points:

  • AD is a rare but life-threatening complication of APS.

  • It is important to look for AD in patients with APS and a suggestive clinical scenario.

  • APS must be excluded in patients with primary adrenal insufficiency and adrenal imaging revealing thrombosis/hemorrhage.

  • Glucocorticoid therapy should be promptly initiated when AD is suspected.

  • Mineralocorticoid replacement must be started when there is confirmed aldosterone deficiency.

  • Hypertension is a common feature of APS; in patients with APS and AD, replacement therapy with glucocorticoids and mineralocorticoids may jeopardize hypertension management.

Open access

S F Wan Muhammad Hatta, L Kandaswamy, C Gherman-Ciolac, J Mann and H N Buch

Summary

Myopathy is a well-known complication of hypercortisolism and commonly involves proximal lower-limb girdle. We report a rare case of Cushing’s syndrome in a 60-year-old female presenting with significant respiratory muscle weakness and respiratory failure. She had history of rheumatoid arthritis, primary biliary cirrhosis and primary hypothyroidism and presented with weight gain and increasing shortness of breath. Investigations confirmed a restrictive defect with impaired gas transfer but with no significant parenchymatous pulmonary disease. Respiratory muscle test confirmed weakness of respiratory muscles and diaphragm. Biochemical and radiological investigations confirmed hypercortisolaemia secondary to a left adrenal tumour. Following adrenalectomy her respiratory symptoms improved along with an objective improvement in the respiratory muscle strength, diaphragmatic movement and pulmonary function test.

Learning points:

  • Cushing’s syndrome can present in many ways, a high index of suspicion is required for its diagnosis, as often patients present with only few of the pathognomonic symptoms and signs of the syndrome.

  • Proximal lower-limb girdle myopathy is common in Cushing’s syndrome. Less often long-term exposure of excess glucocorticoid production can also affect other muscles including respiratory muscle and the diaphragm leading to progressive shortness of breath and even acute respiratory failure.

  • Treatment of Cushing’s myopathy involves treating the underlying cause that is hypercortisolism. Various medications have been suggested to hinder the development of GC-induced myopathy, but their effects are poorly analysed.

Open access

Diana Oliveira, Adriana Lages, Sandra Paiva and Francisco Carrilho

Summary

Addison’s disease, or primary adrenocortical insufficiency, is a long-term, potentially severe, rare endocrine disorder. In pregnancy, it is even rarer. We report the case of a 30-year-old pregnant patient with Addison’s disease, referred to Obstetrics-Endocrinology specialty consult at 14 weeks gestation. She had been to the emergency department of her local hospital various times during the first trimester presenting with a clinical scenario suggestive of glucocorticoid under-replacement (nausea, persistent vomiting and hypotension), but this was interpreted as normal pregnancy symptoms. Hydrocortisone dose was adjusted, and the patient maintained regular follow-up. No complications were reported for the remainder of gestation and delivery. Pregnant patients with Addison’s disease should be monitored during gestation and in the peripartum period by multidisciplinary teams. Adjustments in glucocorticoid and mineralocorticoid replacement therapy are often necessary, and monitoring should be based mainly on clinical findings, which becomes increasingly difficult during pregnancy. Patient education and specialized monitoring are key to avoiding complications from under- or over-replacement therapy in this period.

Learning points:

  • An increase in glucocorticoid replacement dose is expected to be necessary during pregnancy in a woman with Addison’s disease.

  • Patient education regarding steroid cover and symptoms of acute adrenal crisis are fundamental.

  • Monitoring in this period is challenging and remains mainly clinical.

  • The increase in hydrocortisone dose often obviates the need to increase fludrocortisone dose.

Open access

Lukas Burget, Laura Audí Parera, Monica Fernandez-Cancio, Rolf Gräni, Christoph Henzen and Christa E Flück

Summary

Steroidogenic acute regulatory protein (STAR) is a key protein for the intracellular transport of cholesterol to the mitochondrium in endocrine organs (e.g. adrenal gland, ovaries, testes) and essential for the synthesis of all steroid hormones. Several mutations have been described and the clinical phenotype varies strongly and may be grouped into classic lipoid congenital adrenal hyperplasia (LCAH), in which all steroidogenesis is disrupted, and non-classic LCAH, which resembles familial glucocorticoid deficiency (FGD), which affects predominantly adrenal functions. Classic LCAH is characterized by early and potentially life-threatening manifestation of primary adrenal insufficiency (PAI) with electrolyte disturbances and 46,XY disorder of sex development (DSD) in males as well as lack of pubertal development in both sexes. Non-classic LCAH manifests usually later in life with PAI. Nevertheless, life-long follow-up of gonadal function is warranted. We describe a 26-year-old female patient who was diagnosed with PAI early in life without detailed diagnostic work-up. At the age of 14 months, she presented with hyperpigmentation, elevated ACTH and low cortisol levels. As her older brother was diagnosed with PAI two years earlier, she was put on hydrocortisone and fludrocortisone replacement therapy before an Addisonian crisis occurred. Upon review of her case in adulthood, consanguinity was noted in the family. Genetic analysis for PAI revealed a homozygous mutation in the STAR gene (c.562C>T, p.Arg188Cys) in both siblings. This mutation has been previously described in non-classic LCAH. This case illustrates that early onset, familial PAI is likely due to autosomal recessive genetic mutations in known genes causing PAI.

Learning points:

  • In childhood-onset PAI, a genetic cause is most likely, especially in families with consanguinity.

  • Adult patients with an etiologically unsolved PAI should be reviewed repeatedly and genetic work-up should be considered.

  • Knowing the exact genetic diagnosis in PAI is essential for genetic counselling and may allow disease-specific treatment.

  • Young men and women with NCLAH due to homozygous STAR Arg188Cys mutation should be investigated for their gonadal function as hypogonadism and infertility might occur during puberty or in early adulthood.