Browse

You are looking at 1 - 2 of 2 items for :

  • Glucocorticoids x
Clear All
Open access

Matthieu St-Jean, Jessica MacKenzie-Feder, Isabelle Bourdeau and André Lacroix

Summary

A 29-year-old G4A3 woman presented at 25 weeks of pregnancy with progressive signs of Cushing’s syndrome (CS), gestational diabetes requiring insulin and hypertension. A 3.4 × 3.3 cm right adrenal adenoma was identified during abdominal ultrasound imaging for nephrolithiasis. Investigation revealed elevated levels of plasma cortisol, 24 h urinary free cortisol (UFC) and late-night salivary cortisol (LNSC). Serum ACTH levels were not fully suppressed (4 and 5 pmol/L (N: 2–11)). One month post-partum, CS regressed, 24-h UFC had normalised while ACTH levels were now less than 2 pmol/L; however, dexamethasone failed to suppress cortisol levels. Tests performed in vivo 6 weeks post-partum to identify aberrant hormone receptors showed no cortisol stimulation by various tests (including 300 IU hLH i.v.) except after administration of 250 µg i.v. Cosyntropin 1–24. Right adrenalectomy demonstrated an adrenocortical adenoma and atrophy of adjacent cortex. Quantitative RT-PCR analysis of the adenoma revealed the presence of ACTH (MC2) receptor mRNA, while LHCG receptor mRNA was almost undetectable. This case reveals that CS exacerbation in the context of pregnancy can result from the placental-derived ACTH stimulation of MC2 receptors on the adrenocortical adenoma. Possible contribution of other placental-derived factors such as oestrogens, CRH or CRH-like peptides cannot be ruled out.

Learning points:

  • Diagnosis of Cushing’s syndrome during pregnancy is complicated by several physiological alterations in hypothalamic–pituitary–adrenal axis regulation occurring in normal pregnancy.

  • Cushing’s syndrome (CS) exacerbation during pregnancy can be associated with aberrant expression of LHCG receptor on primary adrenocortical tumour or hyperplasia in some cases, but not in this patient.

  • Placental-derived ACTH, which is not subject to glucocorticoid negative feedback, stimulated cortisol secretion from this adrenal adenoma causing transient CS exacerbation during pregnancy.

  • Following delivery and tumour removal, suppression of HPA axis can require several months to recover and requires glucocorticoid replacement therapy.

Open access

C Kamath, J Witczak, M A Adlan and L D Premawardhana

Summary

Thymic enlargement (TE) in Graves’ disease (GD) is often diagnosed incidentally when chest imaging is done for unrelated reasons. This is becoming more common as the frequency of chest imaging increases. There are currently no clear guidelines for managing TE in GD. Subject 1 is a 36-year-old female who presented with weight loss, increased thirst and passage of urine and postural symptoms. Investigations confirmed GD, non-PTH-dependent hypercalcaemia and Addison’s disease (AD). CT scans to exclude underlying malignancy showed TE but normal viscera. A diagnosis of hypercalcaemia due to GD and AD was made. Subject 2, a 52-year-old female, was investigated for recurrent chest infections, haemoptysis and weight loss. CT thorax to exclude chest malignancy, showed TE. Planned thoracotomy was postponed when investigations confirmed GD. Subject 3 is a 47-year-old female who presented with breathlessness, chest pain and shakiness. Investigations confirmed T3 toxicosis due to GD. A CT pulmonary angiogram to exclude pulmonary embolism showed TE. The CT appearances in all three subjects were consistent with benign TE. These subjects were given appropriate endocrine treatment only (without biopsy or thymectomy) as CT appearances showed the following appearances of benign TE – arrowhead shape, straight regular margins, absence of calcification and cyst formation and radiodensity equal to surrounding muscle. Furthermore, interval scans confirmed thymic regression of over 60% in 6 months after endocrine control. In subjects with CT appearances consistent with benign TE, a conservative policy with interval CT scans at 6 months after endocrine control will prevent inappropriate surgical intervention.

Learning points:

  • Chest imaging is common in modern clinical practice and incidental anterior mediastinal abnormalities are therefore diagnosed frequently.

  • Thymic enlargement (TE) associated with Graves’ disease (GD) is occasionally seen in view of the above.

  • There is no validated strategy to manage TE in GD at present.

  • However, CT (or MRI) scan features of the thymus may help characterise benign TE, and such subjects do not require thymic biopsy or surgery at presentation.

  • In them, an expectant ‘wait and see’ policy is recommended with GD treatment only, as the thymus will show significant regression 6 months after endocrine control.