Browse

You are looking at 1 - 2 of 2 items for :

Clear All
Open access

Naoya Toriu, Masayuki Yamanouchi, Rikako Hiramatsu, Noriko Hayami, Junichi Hoshino, Akinari Sekine, Masahiro Kawada, Eiko Hasegawa, Tatsuya Suwabe, Keiichi Sumida, Toshiharu Ueno, Naoki Sawa, Kenichi Ohashi, Takeshi Fujii, Kenmei Takaichi, Motoko Yanagita, Tetsuro Kobayasi and Yoshifumi Ubara

Summary

We report the case of a 67-year-old Japanese woman with type 1 diabetes mellitus. At 47 years of age, her hemoglobin A1c (HbA1c) was 10.0%, and she had overt nephropathy. The first renal biopsy yielded a diagnosis of diabetic nephropathy. Intensive glycemic control was initiated and her HbA1c improved to 6.0%. Renal dysfunction showed no progression for 15 years. At 62 years of age, a second renal biopsy was performed. Glomerular lesions did not show progression but tubulointerstitial fibrosis and vascular lesions showed progression compared with the first biopsy. Intensive glycemic control can prevent the progression of glomerular lesions, but might not be effective for interstitial and vascular lesions.

Learning points:

  • Intensive control of blood glucose can prevent the progression of glomerular lesions.

  • Intensive control of blood glucose may not be able to prevent progression of interstitial and vascular lesions.

  • CSII reduces HbA1c without increasing the risk of hypoglycemia.

Open access

Asma Deeb, Faisal Al-Zidgali and Bibian N Ofoegbu

Summary

Wolcott–Rallison syndrome (WRS) is a rare autosomal recessive disorder due to mutations in the EIF2AK3 gene. It is characterized by permanent neonatal diabetes mellitus, skeletal dysplasia, liver impairment, neutropenia and renal dysfunction. Liver is the most commonly affected organ and liver failure is the commonest cause of death in this syndrome. The EIF2AK3 gene encodes a transmembrane protein PERK, which is important for the cellular response to endoplasmic reticulum (ER) stress. The absence of PERK activity reduces the ER’s abilities to deal with stress, leading to cell death by apoptosis. On acquiring febrile illness, affected patients suffer from liver injury, which may progress into liver failure and death. Renal involvement is less common and is mainly in the form of functional renal impairment at the advanced stage of the disease. Structural renal anomalies have not been reported in WRS. We report a 6-month-old girl who presented with neonatal diabetes on day 1 of life. Her genetic testing confirmed WRS due to missense mutation in the EIF2AK3 gene (c.2867G > A, p.Gly956Glu). Parents are first-degree cousins and both are heterozygous carriers to the mutation. 2 paternal uncles had the same mutation and died of liver disease at 1 and 14 years of age. Neither had a renal disease. She presented with hematuria during a febrile illness at the age of 5 months. Ultrasound scan showed right ectopic multicystic dysplastic kidney (MCDK). To the best of our knowledge, this is the first patient with WRS who is reported to have an MCDK disease.

Learning points:

  • Neonatal diabetes should be considered in babies presenting with early hyperglycemia particularly if there is a family history.

  • Genetic diagnosis in neonatal diabetes enables disease confirmation, genetic counseling and anticipation of potential complications during concomitant situations such as acute illness, trauma or major surgery.

  • There is lack of phenotype–genotype correlation in Wolcott–Rallison syndrome.

  • Structural kidney abnormality, in our case MCDK, can be seen in WRS.