Browse

You are looking at 1 - 2 of 2 items for :

  • Liver failure x
  • C-peptide (blood) x
Clear All
Open access

Takatoshi Anno, Hideaki Kaneto, Ryo Shigemoto, Fumiko Kawasaki, Yasuhiro Kawai, Noriyo Urata, Hirofumi Kawamoto, Kohei Kaku and Niro Okimoto

Summary

Hypoglycemia is induced by many causes, especially over-dose of insulin or oral hypoglycemic agents in diabetic subjects. In such a case, hyperinsulinemic hypoglycemia is usually observed. On the other hand, it is important to classify secondary hypoglycemia and hypoinsulinemic hypoglycemia. Liver injury-induced hypoglycemia is one of the causes of hypoinsulinemic hypoglycemia but rarely observed in clinical practice. Herein, we experienced similar 2 cases of non-diabetic hypoinsulinemic hypoglycemia. Both of them were elderly subjects with low body weight. Furthermore, it is likely that hypoinsulinemic hypoglycemia in both subjects was triggered by severe liver injury, at least in part, due to possible limited liver glycogen store. In elderly subjects with low body weight and/or malnutrition, metabolism in the liver is reduced and glycogen accumulation is decreased. Such alteration brings out acute and marked liver injury, which finally leads to the onset of severe hypoglycemia. It is known that not only liver injury but also multiple organ failure could be induced due to extreme emaciation in subjects. It is likely that in elderly subjects with low body weight and/or malnutrition, multiple organ failure including liver failure could be induced due to the similar reason. Therefore, we should be very careful of such subjects in order to avoid the development of multiple organ failure which leads to life-threatening situations. In conclusion, we should keep in mind the possibility of hypoinsulinemic hypoglycemia when we examine severe liver injury, especially in elderly or starving subjects with low body weight and limited liver glycogen stores.

Learning points:

  • It is important to classify secondary hypoglycemia and hypoinsulinemic hypoglycemia.
  • Liver injury-induced hypoglycemia is one of the causes of hypoinsulinemic hypoglycemia but rarely observed in everyday clinical practice.
  • Herein, we reported similar 2 cases of hypoinsulinemic hypoglycemia without diabetes presumably triggered by severe liver injury.
  • In both cases, hypoglycemia was improved by glucose infusion, although their liver injury was not improved.
  • We should keep in mind the possibility of hypoinsulinemic hypoglycemia when we examine severe liver injury, especially in elderly subjects with low body weight.
Open access

Asma Deeb, Faisal Al-Zidgali and Bibian N Ofoegbu

Summary

Wolcott–Rallison syndrome (WRS) is a rare autosomal recessive disorder due to mutations in the EIF2AK3 gene. It is characterized by permanent neonatal diabetes mellitus, skeletal dysplasia, liver impairment, neutropenia and renal dysfunction. Liver is the most commonly affected organ and liver failure is the commonest cause of death in this syndrome. The EIF2AK3 gene encodes a transmembrane protein PERK, which is important for the cellular response to endoplasmic reticulum (ER) stress. The absence of PERK activity reduces the ER’s abilities to deal with stress, leading to cell death by apoptosis. On acquiring febrile illness, affected patients suffer from liver injury, which may progress into liver failure and death. Renal involvement is less common and is mainly in the form of functional renal impairment at the advanced stage of the disease. Structural renal anomalies have not been reported in WRS. We report a 6-month-old girl who presented with neonatal diabetes on day 1 of life. Her genetic testing confirmed WRS due to missense mutation in the EIF2AK3 gene (c.2867G > A, p.Gly956Glu). Parents are first-degree cousins and both are heterozygous carriers to the mutation. 2 paternal uncles had the same mutation and died of liver disease at 1 and 14 years of age. Neither had a renal disease. She presented with hematuria during a febrile illness at the age of 5 months. Ultrasound scan showed right ectopic multicystic dysplastic kidney (MCDK). To the best of our knowledge, this is the first patient with WRS who is reported to have an MCDK disease.

Learning points:

  • Neonatal diabetes should be considered in babies presenting with early hyperglycemia particularly if there is a family history.
  • Genetic diagnosis in neonatal diabetes enables disease confirmation, genetic counseling and anticipation of potential complications during concomitant situations such as acute illness, trauma or major surgery.
  • There is lack of phenotype–genotype correlation in Wolcott–Rallison syndrome.
  • Structural kidney abnormality, in our case MCDK, can be seen in WRS.