Browse

You are looking at 1 - 7 of 7 items for :

  • 25-hydroxyvitamin-D3 x
Clear All
Open access

Andrew R Tang, Laura E Hinz, Aneal Khan and Gregory A Kline

Summary

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare, autosomal recessive disorder caused by mutations in the SLC34A3 gene that encodes the renal sodium-dependent phosphate cotransporter 2c (NaPi-IIc). It may present as intermittent mild hypercalcemia which may attract initial diagnostic attention but appreciation of concomitant hypophosphatemia is critical for consideration of the necessary diagnostic approach. A 21-year-old woman was assessed by adult endocrinology for low bone mass. She initially presented age two with short stature, nephrocalcinosis and mild intermittent hypercalcemia with hypercalciuria. She had no evidence of medullary sponge kidney or Fanconi syndrome and no bone deformities, pain or fractures. She had recurrent episodes of nephrolithiasis. In childhood, she was treated with hydrochlorothiazide to reduce urinary calcium. Upon review of prior investigations, she had persistent hypophosphatemia with phosphaturia, low PTH and a high-normal calcitriol. A diagnosis of HHRH was suspected and genetic testing confirmed a homozygous c.1483G>A (p.G495R) missense mutation of the SLC34A3 gene. She was started on oral phosphate replacement which normalized her serum phosphate, serum calcium and urine calcium levels over the subsequent 5 years. HHRH is an autosomal recessive condition that causes decreased renal reabsorption of phosphate, leading to hyperphosphaturia, hypophosphatemia and PTH-independent hypercalcemia due to the physiologic increase in calcitriol which also promotes hypercalciuria. Classically, patients present in childhood with bone pain, vitamin D-independent rickets and growth delay. This case of a SLC34A3 mutation illustrates the importance of investigating chronic hypophosphatemia even in the presence of other more common electrolyte abnormalities.

Learning points:

  • Hypophosphatemia is an important diagnostic clue that should not be ignored, even in the face of more common electrolyte disorders.

  • HHRH is a cause of PTH-independent hypophosphatemia that may also show hypercalcemia.

  • HHRH is a cause of hypophosphatemic nephrocalcinosis that should not be treated with calcitriol, unlike other congenital phosphate wasting syndromes.

  • Some congenital phosphate wasting disorders may not present until adolescence or early adulthood.

Open access

Alejandro García-Castaño, Leire Madariaga, Sharona Azriel, Gustavo Pérez de Nanclares, Idoia Martínez de LaPiscina, Rosa Martínez, Inés Urrutia, Aníbal Aguayo, Sonia Gaztambide and Luis Castaño

Summary

Familial hypocalciuric hypercalcemia type I is an autosomal dominant disorder caused by heterozygous loss-of-function mutations in the CASR gene and is characterized by moderately elevated serum calcium concentrations, low urinary calcium excretion and inappropriately normal or mildly elevated parathyroid hormone (PTH) concentrations. We performed a clinical and genetic characterization of one patient suspected of familial hypocalciuric hypercalcemia type I. Patient presented persistent hypercalcemia with normal PTH and 25-hydroxyvitamin D levels. The CASR was screened for mutations by PCR followed by direct Sanger sequencing and, in order to detect large deletions or duplications, multiplex ligation-dependent probe amplification (MLPA) was used. One large deletion of 973 nucleotides in heterozygous state (c.1733-255_2450del) was detected. This is the first large deletion detected by the MLPA technique in the CASR gene.

Learning points:

  • Molecular studies are important to confirm the differential diagnosis of FHH from primary hyperparathyroidism.

  • Large deletions or duplications in the CASR gene can be detected by the MLPA technique.

  • Understanding the functional impact of the mutations is critical for leading pharmacological research and could facilitate the therapy of patients.

Open access

Bidhya Timilsina, Niranjan Tachamo, Prem Raj Parajuli and Ilan Gabriely

Summary

A 74-year-old woman presented with progressive lethargy, confusion, poor appetite and abdominal pain. She was found to have non-PTH-mediated severe hypercalcemia with renal failure and metabolic alkalosis. Extensive workup for hypercalcemia to rule out alternate etiology was unrevealing. Upon further questioning, she was taking excess calcium carbonate (Tums) for her worsening heartburn. She was diagnosed with milk-alkali syndrome (MAS). Her hypercalcemia and alkalosis recovered completely with aggressive hydration along with improvement in her renal function. High index of suspicion should be maintained and history of drug and supplements, especially calcium ingestion, should be routinely asked in patients presenting with hypercalcemia to timely diagnose MAS and prevent unnecessary tests and treatments.

Learning points:

  • Suspect milk-alkali syndrome in patients with hypercalcemia, metabolic alkalosis and renal failure, especially in context of ingestion of excess calcium-containing supplements.

  • Careful history of over-the-counter medications, supplements and diet is crucial to diagnose milk-alkali syndrome.

  • Milk-alkali syndrome may cause severe hypercalcemia in up to 25–30% of cases.

Open access

Kewan Hamid, Neha Dayalani, Muhammad Jabbar and Elna Saah

Summary

A 6-year-old female presented with chronic intermittent abdominal pain for 1 year. She underwent extensive investigation, imaging and invasive procedures with multiple emergency room visits. It caused a significant distress to the patient and the family with multiple missing days at school in addition to financial burden and emotional stress the child endured. When clinical picture was combined with laboratory finding of macrocytic anemia, a diagnosis of hypothyroidism was made. Although chronic abdominal pain in pediatric population is usually due to functional causes such as irritable bowel syndrome, abdominal migraine and functional abdominal pain. Hypothyroidism can have unusual presentation including abdominal pain. The literature on abdominal pain as the main presentation of thyroid disorder is limited. Pediatricians should exclude hypothyroidism in a patient who presents with chronic abdominal pain. Contrast to its treatment, clinical presentation of hypothyroidism can be diverse and challenging, leading to a delay in diagnosis and causing significant morbidity.

Learning points:

  • Hypothyroidism can have a wide range of clinical presentations that are often nonspecific, which can cause difficulty in diagnosis.

  • In pediatric patients presenting with chronic abdominal pain as only symptom, hypothyroidism should be considered by the pediatricians and ruled out.

  • In pediatric population, treatment of hypothyroidism varies depending on patients’ weight and age.

  • Delay in diagnosis of hypothyroidism can cause significant morbidity and distress in pediatrics population.

Open access

Carine Ghassan Richa, Khadija Jamal Saad, Ali Khaled Chaaban and Mohamad Souheil El Rawas

Summary

The objective of the study is to report a case of acute pancreatitis secondary to hypercalcemia induced by primary hyperparathyroidism in a pregnant woman at the end of the first trimester. The case included a 32-year-old woman who was diagnosed with acute pancreatitis and severe hypercalcemia refractory to many regimens of medical therapy in the first trimester of pregnancy. She was successfully treated with parathyroidectomy in the early second trimester with complete resolution of hypercalcemia and pancreatitis. Neonatal course was unremarkable. To our best knowledge, this is a rare case when primary hyperparathyroidism and its complications are diagnosed in the first trimester of pregnancy. In conclusion, primary hyperparathyroidism is a rare life-threatening condition to the fetus and mother especially when associated with complications such as pancreatitis. Early therapeutic intervention is important to reduce the morbidity and mortality. Parathyroidectomy performed in the second trimester can be the only solution.

Learning points:

  • Learning how to make diagnosis of primary hyperparathyroidism in a woman during the first trimester of pregnancy.

  • Understanding the complications of hypercalcemia and be aware of the high mortality and sequelae in both fetus and mother.

  • Providing the adequate treatment in such complicated cases with coordinated care between endocrinologists and obstetricians to ensure optimal outcomes.

Open access

Hans-Christof Schober, Christian Kneitz, Franziska Fieber, Kathrin Hesse and Henry Schroeder

Summary

Tumor-induced osteomalacia (TIO) is caused by the hormone fibroblast growth factor 23 (FGF-23). It is mainly produced in the tissue of mesenchymal tumors. Patients with TIO frequently suffer from a chronic decompensated pain syndrome and/or muscle weakness with postural deformity. Despite the severity of the disease, the diagnosis is frequently established late. In some cases, it takes several years to establish the condition. This case report concerning a 68-year old woman demonstrates the selective blood sampling for FGF-23 as path-breaking diagnostics to confirm the diagnosis of a neuroendocrine tumor.

Learning points:

  • Tumor-induced osteomalacia is a rare condition compared to other paraneoplastic syndromes.

  • It causes complex symptoms such as progressive reduction of physical capacity, exhaustion, fatigue, a decompensated pain syndrome of the musculoskeletal system and fractures of several bones.

  • Elevated serum levels of FGF-23 implicate massive phosphate elimination and resulting hypophosphatemia.

  • The diagnosis is often established over a period of several years because the localization of small FGF-23-producing tumors is complicated.

  • It is the combination of MRI and selective blood sampling for FGF-23 which permits reliable identification of tumors causing TIO and leads to accurate localization.

  • In a patient with generalized pain and reduced physical capacity, osteological parameters such as phosphate, 25-OH vitamin D3 and 1,25-(OH)2D3, as well as bone-specific alkaline phosphatase levels in serum should be determined. Hypophosphatemia should always lead to further diagnostic investigations aiming at the detection of an FGF-23-producing tumor.

Open access

Shintaro Kawai, Hiroyuki Ariyasu, Yasushi Furukawa, Reika Yamamoto, Shinsuke Uraki, Ken Takeshima, Kenji Warigaya, Yuji Nakamoto and Takashi Akamizu

Summary

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome characterized by renal phosphate wasting leading to hypophosphatemia due to excessive actions of fibroblast growth factor 23 (FGF23) produced by the tumors. Although the best way of curing TIO is complete resection, it is usually difficult to detect the culprit tumors by general radiological modalities owing to the size and location of the tumors. We report a case of TIO in which the identification of the tumor by conventional imaging studies was difficult. Nonetheless, a diagnosis was made possible by effective use of multiple modalities. We initially suspected that the tumor existed in the right dorsal aspect of the scapula by 68Ga-DOTATOC positron emission tomography/computed tomography (68Ga-DOTATOC-PET/CT) and supported the result by systemic venous sampling (SVS). The tumor could also be visualized by 3T-magnetic resonance imaging (MRI), although it was not detected by 1.5T-MRI, and eventually be resected completely. In cases of TIO, a stepwise approach of 68Ga-DOTATOC-PET/CT, SVS and 3T-MRI can be effective for confirmation of diagnosis.

Learning points:

  • TIO shows impaired bone metabolism due to excessive actions of FGF23 produced by the tumor. The causative tumors are seldom detected by physical examinations and conventional radiological modalities.

  • In TIO cases, in which the localization of the culprit tumors is difficult, 68Ga-DOTATOC-PET/CT should be performed as a screening of localization and thereafter SVS should be conducted to support the result of the somatostatin receptor (SSTR) imaging leading to increased diagnosability.

  • When the culprit tumors cannot be visualized by conventional imaging studies, using high-field MRI at 3T and comparing it to the opposite side are useful after the tumor site was determined.