Browse

You are looking at 1 - 6 of 6 items for :

  • Short stature x
Clear All
Open access

Alireza Arefzadeh, Pooyan Khalighinejad, Bahar Ataeinia and Pegah Parvar

Summary

Deletion of chromosome 2q37 results in a rare congenital syndrome known as brachydactyly mental retardation (BDMR) syndrome; a syndrome which has phenotypes similar to Albright hereditary osteodystrophy (AHO) syndrome. In this report, we describe a patient with AHO due to microdeletion in long arm of chromosome 2 [del(2)(q37.3)] who had growth hormone (GH) deficiency, which is a unique feature among reported BDMR cases. This case was presented with shortening of the fourth and fifth metacarpals which along with AHO phenotype, brings pseudopseudohypoparathyroidism (PPHP) and pseudohypoparathyroidism type Ia (PHP-Ia) to mind; however, a genetic study revealed del(2)(q37.3). We recommend clinicians to take BDMR in consideration when they are faced with the features of AHO; although this syndrome is a rare disease, it should be ruled out while diagnosing PPHP or PHP-Ia. Moreover, we recommend evaluation of IGF 1 level and GH stimulation test in patients with BDMR whose height is below the 3rd percentile.

Learning points:

  • Clinicians must have brachydactyly mental retardation (BDMR) syndrome in consideration when they are faced with the features of Albright hereditary osteodystrophy.

  • Although BDMR syndrome is a rare disease, it should be ruled out while diagnosing PPHP or PHP-Ia.

  • Evaluation of IGF1 level in patients diagnosed with BDMR whose height is below the 3rd percentile is important.

Open access

E Mogas, A Campos-Martorell, M Clemente, L Castaño, A Moreno-Galdó, D Yeste and A Carrascosa

Summary

Two pediatric patients with different causes of hyperparathyroidism are reported. First patient is a 13-year-old male with severe hypercalcemia due to left upper parathyroid gland adenoma. After successful surgery, calcium and phosphate levels normalized, but parathormone levels remained elevated. Further studies revealed a second adenoma in the right gland. The second patient is a 13-year-old female with uncommon hypercalcemia symptoms. Presence of pathogenic calcium-sensing receptor gene (CASR) mutation was found, resulting in diagnosis of symptomatic familial hypocalciuric hypercalcemia. Cinacalcet, a calcium-sensing agent that increases the sensitivity of the CASR, was used in both patients with successful results.

Learning points:

  • Hyperparathyroidism is a rare condition in pediatric patients. If not treated, it can cause serious morbidity.

  • Genetic tests searching for CASR or MEN1 gene mutations in pediatric patients with primary hyperparathyroidism should be performed.

  • Cinacalcet has been effective for treating different causes of hyperparathyroidism in our two pediatric patients.

  • Treatment has been well tolerated and no side effects have been detected.

Open access

Jia Xuan Siew and Fabian Yap

Summary

Growth anomaly is a prominent feature in Wolf-Hirschhorn syndrome (WHS), a rare congenital disorder caused by variable deletion of chromosome 4p. While growth charts have been developed for WHS patients 0–4 years of age and growth data available for Japanese WHS patients 0–17 years, information on pubertal growth and final height among WHS children remain lacking. Growth hormone (GH) therapy has been reported in two GH-sufficient children with WHS, allowing for pre-puberty catch up growth; however, pubertal growth and final height information was also unavailable. We describe the complete growth journey of a GH-sufficient girl with WHS from birth until final height (FH), in relation to her mid parental height (MPH) and target range (TR). Her growth trajectory and pubertal changes during childhood, when she was treated with growth hormone (GH) from 3 years 8 months old till 6 months post-menarche at age 11 years was fully detailed.

Learning points:

  • Pubertal growth characteristics and FH information in WHS is lacking.

  • While pre-pubertal growth may be improved by GH, GH therapy may not translate to improvement in FH in WHS patients.

  • Longitudinal growth, puberty and FH data of more WHS patients may improve the understanding of growth in its various phases (infancy/childhood/puberty).

Open access

Lukas Burget, Laura Audí Parera, Monica Fernandez-Cancio, Rolf Gräni, Christoph Henzen and Christa E Flück

Summary

Steroidogenic acute regulatory protein (STAR) is a key protein for the intracellular transport of cholesterol to the mitochondrium in endocrine organs (e.g. adrenal gland, ovaries, testes) and essential for the synthesis of all steroid hormones. Several mutations have been described and the clinical phenotype varies strongly and may be grouped into classic lipoid congenital adrenal hyperplasia (LCAH), in which all steroidogenesis is disrupted, and non-classic LCAH, which resembles familial glucocorticoid deficiency (FGD), which affects predominantly adrenal functions. Classic LCAH is characterized by early and potentially life-threatening manifestation of primary adrenal insufficiency (PAI) with electrolyte disturbances and 46,XY disorder of sex development (DSD) in males as well as lack of pubertal development in both sexes. Non-classic LCAH manifests usually later in life with PAI. Nevertheless, life-long follow-up of gonadal function is warranted. We describe a 26-year-old female patient who was diagnosed with PAI early in life without detailed diagnostic work-up. At the age of 14 months, she presented with hyperpigmentation, elevated ACTH and low cortisol levels. As her older brother was diagnosed with PAI two years earlier, she was put on hydrocortisone and fludrocortisone replacement therapy before an Addisonian crisis occurred. Upon review of her case in adulthood, consanguinity was noted in the family. Genetic analysis for PAI revealed a homozygous mutation in the STAR gene (c.562C>T, p.Arg188Cys) in both siblings. This mutation has been previously described in non-classic LCAH. This case illustrates that early onset, familial PAI is likely due to autosomal recessive genetic mutations in known genes causing PAI.

Learning points:

  • In childhood-onset PAI, a genetic cause is most likely, especially in families with consanguinity.

  • Adult patients with an etiologically unsolved PAI should be reviewed repeatedly and genetic work-up should be considered.

  • Knowing the exact genetic diagnosis in PAI is essential for genetic counselling and may allow disease-specific treatment.

  • Young men and women with NCLAH due to homozygous STAR Arg188Cys mutation should be investigated for their gonadal function as hypogonadism and infertility might occur during puberty or in early adulthood.

Open access

Jeremy M W Kirk, Nalin Wickramasuriya and Nicholas J Shaw

Summary

Estrogen is used to induce puberty in peripubertal girls with hypogonadism. Although both synthetic and natural forms are available, along with different routes of administration, in the UK oral ethinyl estradiol and the low-dose oral contraceptive pill are commonly used as hormone replacement therapy for practical reasons. We present five peripubertal girls (aged 12.5–14.9 years) with hypogonadism (two with primary hypogonadism due to Turner syndrome and three with central (secondary) hypogonadism as part of multiple pituitary hormone deficiency) who for a variety of reasons have received milligram doses of estradiol (E2) in error for between 6 weeks and 6 months, instead of the expected microgram doses of ethinyl estradiol. Although there are no direct comparisons in peripubertal girls between synthetic and natural estrogens, all girls had vaginal bleeding whilst receiving the milligram doses and have ended up with reduced final heights, below the 9th centile in 1 and below the 2nd centile in 4. Whilst reduction in final height may be part of the underlying condition (especially in Turner syndrome) the two girls with height predictions performed prior to receiving the estrogen overdose have not achieved their predicted height. Estrogen is one of the few drugs which is available in both milligram and microgram formulations. Clinicians need to be alert to the possibility of patients receiving the wrong formulation and dosage in error.

Learning points

  • Girls with primary and secondary gonadal failure require assistance with pubertal induction.

  • Although several different formulations and route of administration are available, for practical reasons, the majority of girls in the UK receive oral ethinyl estradiol.

  • Estrogen preparations are available in both milligram and microgram formulations, with potential for receiving the wrong dose.

  • Girls receiving milligram rather than microgram preparations all had vaginal bleeding and a short final height.

Open access

Renata Lange, Caoê Von Linsingen, Fernanda Mata, Aline Barbosa Moraes, Mariana Arruda and Leonardo Vieira Neto

Summary

Ring chromosomes (RCs) are uncommon cytogenetic findings, and RC11 has only been described in 19 cases in the literature. Endocrine abnormalities associated with RC11 were reported for two of these cases. The clinical features of RC11 can result from an alteration in the structure of the genetic material, ring instability, mosaicism, and various extents of genetic material loss. We herein describe a case of RC11 with clinical features of 11q-syndrome and endocrine abnormalities that have not yet been reported. A 20-year-old female patient had facial dysmorphism, short stature, psychomotor developmental delays, a ventricular septal defect, and thrombocytopenia. Karyotyping demonstrated RC11 (46,XX,r(11)(p15q25)). This patient presented with clinical features that may be related to Jacobsen syndrome, which is caused by partial deletion of the long arm of chromosome 11. Regarding endocrine abnormalities, our patient presented with precocious puberty followed by severe hirsutism, androgenic alopecia, clitoromegaly, and amenorrhea, which were associated with overweight, type 2 diabetes mellitus (T2DM), and hyperinsulinemia; therefore, this case meets the diagnostic criteria for polycystic ovary syndrome. Endocrine abnormalities are rare in patients with RC11, and the association of RC11 with precocious puberty, severe clinical hyperandrogenism, insulin resistance, and T2DM has not been reported previously. We speculate that gene(s) located on chromosome 11 might be involved in the pathogenesis of these conditions. Despite the rarity of RCs, studies to correlate the genes located on the chromosomes with the phenotypes observed could lead to major advances in the understanding and treatment of more prevalent diseases.

Learning points

  • We hypothesize that the endocrine features of precocious puberty, severe clinical hyperandrogenism, insulin resistance, and T2DM might be associated with 11q-syndrome.

  • A karyotype study should be performed in patients with short stature and facial dysmorphism.

  • Early diagnosis and adequate management of these endocrine abnormalities are essential to improve the quality of life of the patient and to prevent other chronic diseases, such as diabetes and its complications.