Browse

You are looking at 1 - 3 of 3 items for :

  • Adrenalectomy x
  • Adrenocortical carcinoma x
Clear All
Open access

Pedro Marques, Nicola Tufton, Satya Bhattacharya, Mark Caulfield and Scott A Akker

Summary

Mineralocorticoid hypertension is most often caused by autonomous overproduction of aldosterone, but excess of other mineralocorticoid precursors can lead to a similar presentation. 11-Deoxycorticosterone (DOC) excess, which can occur in 11-β hydroxylase or 17-α hydroxylase deficiencies, in DOC-producing adrenocortical tumours or in patients taking 11-β hydroxylase inhibitors, may cause mineralocorticoid hypertension. We report a 35-year-old woman who in the third trimester of pregnancy was found to have a large adrenal mass on routine obstetric ultrasound. On referral to our unit, persistent hypertension and long-standing hypokalaemia was noted, despite good compliance with multiple antihypertensives. Ten years earlier, she had hypertension noted in pregnancy which had persisted after delivery. A MRI scan confirmed the presence of a 12 cm adrenal mass and biochemistry revealed high levels of DOC and low/normal renin, aldosterone and dehydroepiandrosterone, with normal catecholamine levels. The patient was treated with antihypertensives until obstetric delivery, following which she underwent an adrenalectomy. Histology confirmed a large adrenal cortical neoplasm of uncertain malignant potential. Postoperatively, blood pressure and serum potassium normalised, and the antihypertensive medication was stopped. Over 10 years of follow-up, she remains asymptomatic with normal DOC measurements. This case should alert clinicians to the possibility of a diagnosis of a DOC-producing adrenal tumours in patients with adrenal nodules and apparent mineralocorticoid hypertension in the presence of low or normal levels of aldosterone. The associated diagnostic and management challenges are discussed.

Learning points:

  • Hypermineralocorticoidism is characterised by hypertension, volume expansion and hypokalaemic alkalosis and is most commonly due to overproduction of aldosterone. However, excess of other mineralocorticoid products, such as DOC, lead to the same syndrome but with normal or low aldosterone levels.
  • The differential diagnosis of resistant hypertension with low renin and low/normal aldosterone includes congenital adrenal hyperplasia, syndrome of apparent mineralocorticoid excess, Cushing’s syndrome, Liddle’s syndrome and 11-deoxycorticosterone-producing tumours.
  • DOC is one intermediate product in the mineralocorticoid synthesis with weaker activity than aldosterone. However, marked DOC excess seen in 11-β hydroxylase or 17-α hydroxylase deficiencies in DOC-producing adrenocortical tumours or in patients taking 11-β hydroxylase inhibitors, may cause mineralocorticoid hypertension.
  • Excessive production of DOC in adrenocortical tumours has been attributed to reduced activity of the enzymes 11-β hydroxylase and 17-α hydroxylase and increased activity of 21-α hydroxylase.
  • The diagnosis of DOC-producing adrenal tumours is challenging because of its rarity and poor availability of DOC laboratory assays.
Open access

Philip D Oddie, Benjamin B Albert, Paul L Hofman, Craig Jefferies, Stephen Laughton and Philippa J Carter

Summary

Adrenocortical carcinoma (ACC) during childhood is a rare malignant tumor that frequently results in glucocorticoid and/or androgen excess. When there are signs of microscopic or macroscopic residual disease, adjuvant therapy is recommended with mitotane, an adrenolytic and cytotoxic drug. In addition to the anticipated side effect of adrenal insufficiency, mitotane is known to cause gynecomastia and hypothyroidism in adults. It has never been reported to cause precocious puberty. A 4-year-old girl presented with a 6-week history of virilization and elevated androgen levels and 1-year advancement in bone age. Imaging revealed a right adrenal mass, which was subsequently surgically excised. Histology revealed ACC with multiple unfavorable features, including high mitotic index, capsular invasion and atypical mitoses. Adjuvant chemotherapy was started with mitotane, cisplatin, etoposide and doxorubicin. She experienced severe gastrointestinal side effects and symptomatic adrenal insufficiency, which occurred despite physiological-dose corticosteroid replacement. She also developed hypothyroidism that responded to treatment with levothyroxine and peripheral precocious puberty (PPP) with progressive breast development and rapidly advancing bone age. Five months after discontinuing mitotane, her adrenal insufficiency persisted and she developed secondary central precocious puberty (CPP). This case demonstrates the diverse endocrine complications associated with mitotane therapy, which contrast with the presentation of ACC itself. It also provides the first evidence that the known estrogenic effect of mitotane can manifest as PPP.

Learning points:

  • Adrenocortical carcinoma is an important differential diagnosis for virilization in young children
  • Mitotane is a chemotherapeutic agent that is used to treat adrenocortical carcinoma and causes adrenal necrosis
  • Mitotane is an endocrine disruptor. In addition to the intended effect of adrenal insufficiency, it can cause hypothyroidism, with gynecomastia also reported in adults.
  • Patients taking mitotane require very high doses of hydrocortisone replacement therapy because mitotane interferes with steroid metabolism. This effect persists after mitotane therapy is completed
  • In our case, mitotane caused peripheral precocious puberty, possibly through its estrogenic effect.
Open access

Ravi Kumar Menon, Francesco Ferrau, Tom R Kurzawinski, Gill Rumsby, Alexander Freeman, Zahir Amin, Márta Korbonits and Teng-Teng L L Chung

Summary

Adrenal cortical carcinoma (ACC) has previously only been reported in eight patients with type 1 neurofibromatosis (NF1). There has not been any clear evidence of a causal association between NF1 gene mutations and adrenocortical malignancy development. We report the case of a 49-year-old female, with no family history of endocrinopathy, who was diagnosed with ACC on the background of NF1, due to a novel germline frame shift mutation (c.5452_5453delAT) in exon 37 of the NF1 gene. A left adrenal mass was detected by ultrasound and characterised by contrast computerised tomography (CT) scan. Biochemical tests showed mild hypercortisolism and androgen excess. A 24-h urinary steroid profile and 18flouro deoxy glucose PET suggested ACC. An open adrenalectomy was performed and histology confirmed ACC. This is the first reported case with DNA analysis, which demonstrated the loss of heterozygosity (LOH) at the NF1 locus in the adrenal cancer, supporting the hypothesis of an involvement of the NF1 gene in the pathogenesis of ACC. LOH analysis of the tumour suggests that the loss of neurofibromin in the adrenal cells may lead to tumour formation.

Learning points

  • ACC is rare but should be considered in a patient with NF1 and adrenal mass when plasma metanephrines are normal.
  • Urinary steroid metabolites and PET/CT are helpful in supporting evidence for ACC.
  • The LOH at the NF1 region of the adrenal tumour supports the role of loss of neurofibromin in the development of ACC.