Browse

You are looking at 1 - 10 of 21 items for :

  • Unique/unexpected symptoms or presentations of a disease x
  • Publication Details x
  • Patient Demographics x
  • Case Report Type x
Clear All
Ishara Ranathunga Department of Diabetes and Endocrinology, North Cumbria Integrated Care NHS Foundation Trust, Whitehaven, UK

Search for other papers by Ishara Ranathunga in
Google Scholar
PubMed
Close
and
Chandima Idampitiya Department of Diabetes and Endocrinology, North Cumbria Integrated Care NHS Foundation Trust, Whitehaven, UK

Search for other papers by Chandima Idampitiya in
Google Scholar
PubMed
Close

Summary

Type 1 diabetes mellitus (T1DM) is an autoimmune disorder caused by the destruction of the pancreatic beta cells, which produce insulin. Individuals with T1DM usually require at least 3-5 years to develop microvascular complications in comparison to people with type 2 diabetes (T2DM), who may develop complications even before the diagnosis of diabetes. We discuss a patient who presented with proliferative diabetic retinopathy subsequently diagnosed with T1DM and diabetic neuropathy following investigations. Diabetic retinopathy or other microvascular complications as the presenting feature of T1DM is rarely known or reported in the literature. A 33-year-old healthcare worker had been seen by the opticians due to 1-week history of blurred vision. The ophthalmology assessment had confirmed proliferative retinopathy in the right eye and severe non-proliferative retinopathy in the left eye with bilateral clinically significant macular oedema. His BMI was 24.9 kg/m2. The nervous system examination revealed bilateral stocking type peripheral neuropathy. The random venous glucose was 24.9 mmol/L. Plasma ketones were 0.7 mmol/L and HbA1c was 137 mmol/mol. On further evaluation, the anti-glutamic acid decarboxylase (GAD) antibody was positive, confirming the diagnosis of T1DM. He was started on aflibercept injections in both eyes, followed by panretinal photocoagulation. Subsequent nerve conduction studies confirmed the presence of symmetrical polyneuropathy. The pathogenesis of the development of microvascular complications in T1DM is multifactorial. Usually, the development of complications is seen at least a few years following the diagnosis. The occurrence of microvascular complications at presentation is rare. This makes the management challenging and extremely important in preventing the progression of the disease.

Learning points

  • The pathogenesis of the development of microvascular complications in type 1 diabetes mellitus is multifactorial.

  • The development of complications is seen at least a few years following the diagnosis.

  • Occurrence of microvascular complications at presentation is rare.

  • This makes the management challenging and extremely important to prevent the progression of the disease.

Open access
Clemens Gardemann FH Münster Oecotrophologie, Münster, Germany
Clinic for Pediatrics and Adolescent Medicine/Metabolism Laboratory, Universitätsklinikum Münster, Münster, Germany

Search for other papers by Clemens Gardemann in
Google Scholar
PubMed
Close
,
Sonja Knowles FH Münster Oecotrophologie, Münster, Germany

Search for other papers by Sonja Knowles in
Google Scholar
PubMed
Close
, and
Thorsten Marquardt Clinic for Pediatrics and Adolescent Medicine/Metabolism Laboratory, Universitätsklinikum Münster, Münster, Germany

Search for other papers by Thorsten Marquardt in
Google Scholar
PubMed
Close

Summary

Traditional guidelines for type 1 diabetics do not restrict carbohydrates to improve clinical outcomes for patients. This paper highlights the favorable blood glucose control outcomes when a type 1 diabetic focuses on caloric intake from protein and healthy fats instead of the traditional carbohydrate-focused meals. We followed a male type 1 diabetic in his 20s adopting a ketogenic diet through a process of slowly lowering total daily carbohydrate intake. Diabetes-related biomarkers were measured throughout the process. Diabetes-related biomarkers saw massive improvements and ended up in the official non-diabetic range. Total daily insulin requirements dropped by 70%. The patient also experienced great improvements in his quality of life. This study demonstrates the possibility of improving diabetes-related biomarkers through dietary changes, which have positive effects on health outcomes in patients living with this disease.

Learning points

  • The adaptation of a ketogenic diet improved diabetes-related biomarkers in this patient.

  • Diabetes-related biomarkers, such as HbA1c, are the main risk factors for developing complications in diabetics.

  • The ketogenic diet is a feasible approach to minimizing the risk of developing complications in diabetics.

  • Total daily insulin requirements dropped by 67% adapting a ketogenic diet.

  • The patient experienced enormous changes in the quality of life after adapting to the new diet.

  • The safe and physiological state of ketosis might be associated with additional benefits for the patient

Open access
Toshitaka Sawamura Department of Internal Medicine, Asanogawa General Hospital, Kosakamachinaka, Kanazawa, Ishikawa, Japan
Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medicine, Takaramachi, Kanazawa, Japan
Department of Health Promotion and Medicine of the Future, Kanazawa University, Takaramachi, Kanazawa, Japan

Search for other papers by Toshitaka Sawamura in
Google Scholar
PubMed
Close
,
Shigehiro Karashima Department of Health Promotion and Medicine of the Future, Kanazawa University, Takaramachi, Kanazawa, Japan

Search for other papers by Shigehiro Karashima in
Google Scholar
PubMed
Close
,
Ai Ohmori Department of Internal Medicine, Asanogawa General Hospital, Kosakamachinaka, Kanazawa, Ishikawa, Japan
Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medicine, Takaramachi, Kanazawa, Japan

Search for other papers by Ai Ohmori in
Google Scholar
PubMed
Close
,
Kei Sawada Department of Internal Medicine, Asanogawa General Hospital, Kosakamachinaka, Kanazawa, Ishikawa, Japan

Search for other papers by Kei Sawada in
Google Scholar
PubMed
Close
,
Daisuke Aono Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medicine, Takaramachi, Kanazawa, Japan
Department of Health Promotion and Medicine of the Future, Kanazawa University, Takaramachi, Kanazawa, Japan

Search for other papers by Daisuke Aono in
Google Scholar
PubMed
Close
,
Mitsuhiro Kometani Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medicine, Takaramachi, Kanazawa, Japan
Department of Health Promotion and Medicine of the Future, Kanazawa University, Takaramachi, Kanazawa, Japan

Search for other papers by Mitsuhiro Kometani in
Google Scholar
PubMed
Close
,
Yoshiyu Takeda Department of Internal Medicine, Asanogawa General Hospital, Kosakamachinaka, Kanazawa, Ishikawa, Japan

Search for other papers by Yoshiyu Takeda in
Google Scholar
PubMed
Close
, and
Takashi Yoneda Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medicine, Takaramachi, Kanazawa, Japan
Department of Health Promotion and Medicine of the Future, Kanazawa University, Takaramachi, Kanazawa, Japan

Search for other papers by Takashi Yoneda in
Google Scholar
PubMed
Close

Summary

Fulminant type 1 diabetes (FT1D) is a subtype of diabetes characterized by rapid progression of β-cell destruction, hyperglycemia, and diabetic ketoacidosis (DKA). The pathogenesis of this disease remains unclear. However, viral infections, HLA genes, and immune checkpoint inhibitor use were reportedly involved in this disease. A 51-year-old Japanese man with no chronic medical condition was admitted to our hospital with complaints of nausea and vomiting. Cough, sore throat, nasal discharge, and diarrhea were not noted. He had a medical history of at least two influenza infections. His vaccination history was notable for receiving an inactive split influenza vaccine 12 days prior to developing these symptoms. He was diagnosed with DKA associated with FT1D. His HLA class II genotypes were nonsusceptible to FT1D, and he had a negative history of immune checkpoint inhibitor use. The destruction of the pancreas by cytotoxic T cells is reported to be involved in FT1D. Inactive split influenza vaccines do not directly activate cytotoxic T cells. However, these could activate the redifferentiation of memory CD8-positive T cells into cytotoxic T cells and induce FT1D, as this patient had a history of influenza infections.

Learning points

  • Influenza split vaccination could cause fulminant type 1 diabetes (FT1D).

  • The mechanism of influenza split vaccine-induced FT1D might be through the redifferentiation of CD8-positive memory T cells into cytotoxic T cells.

Open access
Valerie Lai Department of Medicine, University of Alberta, Edmonton, AB, Canada

Search for other papers by Valerie Lai in
Google Scholar
PubMed
Close
,
Mariam Shahidi Department of Medicine, University of Alberta, Edmonton, AB, Canada
Division of Endocrinology and Metabolism, University of Alberta, Edmonton, AB, Canada

Search for other papers by Mariam Shahidi in
Google Scholar
PubMed
Close
,
Alicia Chan Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada

Search for other papers by Alicia Chan in
Google Scholar
PubMed
Close
, and
Shailly Jain-Ghai Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada

Search for other papers by Shailly Jain-Ghai in
Google Scholar
PubMed
Close

Summary

3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) lyase deficiency is an inborn error of metabolism resulting in a lack of ketogenesis and leucine catabolism. Hallmarks of decompensation include hypoglycemia without ketosis (or hypoketosis), metabolic acidosis, and hyperammonemia. Management includes avoiding fasting and restricting dietary protein and fat. Conversely, type 2 diabetes mellitus (T2DM) requires carbohydrate restriction and/or anti-hyperglycemic agents; thus, managing these co-existing disorders is challenging. A 36-year-old male with HMG-CoA lyase deficiency and T2DM (Hemoglobin A1c (HbA1c): 7.9%) presented with confusion and shock. Blood work revealed metabolic acidosis, hyperammonemia, hyperglycemia, and hypoketosis. The patient was diagnosed with hyperosmolar non-ketotic hyperglycemia and hyperammonemia secondary to HMG-CoA lyase metabolic decompensation requiring intensive care unit admission. Hyperammonemia management was challenging because alternative calories with i.v. dextrose (due to hyperglycemia) and i.v. lipids (due to HMG-CoA lyase deficiency) could not be provided as usual. The patient was started on hemodialysis and i.v. insulin with marked improvement. Once stabilized, metformin and insulin were initiated. T2DM impaired cellular glucose uptake and produced a state similar to hypoglycemia, despite the patient being profoundly hyperglycemic, which led to metabolic decompensation of HMG-CoA lyase deficiency. Managing T2DM and HMG-CoA lyase deficiency warrants special considerations due to the potential for metabolic decompensation with both hyperglycemia and hypoglycemia.

Learning points

  • In a patient with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) lyase deficiency and type 2 diabetes mellitus (T2DM), management principles include avoiding hypoglycemia to prevent metabolic decompensation, providing insulin for proper glucose utilization, and moderation of carbohydrate intake to prevent consequences of chronic hyperglycemia.

  • The development of insulin resistance in the form of T2DM in HMG-CoA lyase deficiency likely triggered a state similar to hypoglycemia, leading to cellular energy deficiency and subsequently metabolic decompensation.

  • It is important to avoid hypoglycemia in patients with HMG-CoA lyase deficiency and T2DM, as the risk of metabolic decompensation is increased due to the lack of ketogenesis in HMG-CoA lyase deficiency.

  • Selection of antidiabetic agents in this patient population requires careful consideration, and agents that have a higher risk of hypoglycemia should be avoided.

Open access
Raad Alwithenani Department of Medicine, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
Department of Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia

Search for other papers by Raad Alwithenani in
Google Scholar
PubMed
Close
,
Danielle M Andrade Department of Medicine, Division of Neurology, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Danielle M Andrade in
Google Scholar
PubMed
Close
,
Lingxin Zhang Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada

Search for other papers by Lingxin Zhang in
Google Scholar
PubMed
Close
, and
Karen E Gomez-Hernandez Department of Medicine, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Karen E Gomez-Hernandez in
Google Scholar
PubMed
Close

Summary

Myopathy caused by thyrotoxicosis is not uncommon. Skeletal muscles are commonly involved, but dysphagia is a rare manifestation of thyrotoxicosis. We aim to raise awareness of dysphagia caused by hyperthyroidism and review similar cases in the literature. We present a case of severe dysphagia caused by hyperthyroidism. We also summarize similar case reports in the literature. Our patient is a 77-year-old man who presented with thyrotoxicosis related to Graves’ disease (GD), dysphagia to both liquid and solid food, and weight loss. Further investigations revealed severe esophageal dysphagia and a high risk for aspiration. He required the placement of a G-tube for feeding. After 8 weeks of methimazole treatment, his thyroid function normalized and his dysphagia improved significantly, leading to the removal of the feeding G-tube. We summarize 19 case reports published in the literature of hyperthyroidism leading to dysphagia. Patients with thyrotoxicosis and dysphagia are at higher risk for aspiration pneumonia and thyroid storm. Based on previous case reports, on average, approximately 3 weeks of treatment with anti-thyroidal drugs and beta-blockers is needed before patients can eat normally. We report a case of dysphagia associated with GD, which is rare and needs prompt recognition to restore euthyroid status. Dysphagia generally resolved with normalization of thyroid function.

Learning points

  • Myopathy caused by thyrotoxicosis is not uncommon.

  • Skeletal muscles are commonly involved, but dysphagia is a rare manifestation of thyrotoxicosis.

  • Dysphagia due to hyperthyroidism resolves with normalization of thyroid function.

  • Early recognition of dysphagia related to hyperthyroidism and early initiation of therapy may help reverse the dysphagia and prevent complications.

Open access
George Brown Department of Hepatobiliary & Pancreatic Surgery, University Hospital Southampton, Southampton, UK

Search for other papers by George Brown in
Google Scholar
PubMed
Close
,
Anthony Mark Monaghan Department of Hepatobiliary & Pancreatic Surgery, University Hospital Southampton, Southampton, UK

Search for other papers by Anthony Mark Monaghan in
Google Scholar
PubMed
Close
,
Richard Fristedt Department of Hepatobiliary & Pancreatic Surgery, University Hospital Southampton, Southampton, UK

Search for other papers by Richard Fristedt in
Google Scholar
PubMed
Close
,
Emma Ramsey Department of Hepatobiliary & Pancreatic Surgery, University Hospital Southampton, Southampton, UK

Search for other papers by Emma Ramsey in
Google Scholar
PubMed
Close
,
Ma’en Al-Mrayat Department of Endocrinology, University Hospital Southampton, Southampton, UK

Search for other papers by Ma’en Al-Mrayat in
Google Scholar
PubMed
Close
,
Rushda Rajak Department of Cellular Pathology, University Hospital Southampton, Southampton, UK

Search for other papers by Rushda Rajak in
Google Scholar
PubMed
Close
,
Thomas Armstrong Department of Hepatobiliary & Pancreatic Surgery, University Hospital Southampton, Southampton, UK

Search for other papers by Thomas Armstrong in
Google Scholar
PubMed
Close
, and
Arjun Takhar Department of Hepatobiliary & Pancreatic Surgery, University Hospital Southampton, Southampton, UK

Search for other papers by Arjun Takhar in
Google Scholar
PubMed
Close

Summary

Vasoactive intestinal peptide-secreting tumours (VIPomas) are an extremely rare form of functional pancreatic neuroendocrine tumour with an estimated annual incidence of 1 in 10 million. Associated tumour hypersecretion of other peptides, including pancreatic polypeptide (PPomas), may also be seen. These malignancies classically present with a defined triad of refractory diarrhoea, hypokalaemia and metabolic acidosis known as Verner–Morrison syndrome. Diagnosis is frequently delayed, and the majority of patients will have metastatic disease at presentation. Symptoms are usually well controlled with somatostatin analogue administration. Here we report a case of metastatic mixed VIPoma/PPoma-induced diarrhoea causing renal failure so severe that ultrafiltration was required to recover adequate renal function.

Learning points

  • Profuse, watery diarrhoea is a common presenting complaint with a multitude of aetiologies. This, combined with the rarity of these tumours, makes diagnosis difficult and frequently delayed. A functional neuroendocrine tumour should be suspected when diarrhoea is unusually extreme, prolonged and common causes have been promptly excluded.

  • These patients are likely to be profoundly unwell on presentation. They are extremely hypovolaemic with dangerous electrolyte and metabolic abnormalities. Aggressive initial rehydration and electrolyte replacement are imperative. A somatostatin analogue should be commenced as soon as the diagnosis is suspected.

  • This is an extreme example of Verner–Morrison syndrome. We are unaware of another case where renal failure secondary to diarrhoea and dehydration was so severe that renal replacement therapy was required to restore adequate renal function, further emphasising how critically unwell these patients can be.

  • Both the primary tumour and metastases showed a remarkably good and rapid response to somatostatin analogue administration. Cystic change and involution were noted on repeat imaging within days.

  • Prior to his illness, this patient was extremely high functioning with no medical history. His diagnosis was an enormous psychological shock, and the consideration and care for his psychological well-being were a crucial part of his overall management. It highlights the importance of a holistic approach to cancer care and the role of the clinical nurse specialist within the cancer multidisciplinary team.

Open access
Jenny S W Yun Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia

Search for other papers by Jenny S W Yun in
Google Scholar
PubMed
Close
,
Chris McCormack Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia

Search for other papers by Chris McCormack in
Google Scholar
PubMed
Close
,
Michelle Goh Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia

Search for other papers by Michelle Goh in
Google Scholar
PubMed
Close
, and
Cherie Chiang Department of Internal Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
University of Melbourne, Parkville, Victoria, Australia

Search for other papers by Cherie Chiang in
Google Scholar
PubMed
Close

Summary

Acanthosis nigricans (AN) is a common dermatosis associated with hyperinsulinemia and insulin resistance. However, AN has been rarely reported in patients with insulinoma, a state of persistent hyperinsulinemia. We present a case of metastatic insulinoma, in whom AN manifested after the first cycle of peptide receptor radionuclide therapy (PRRT). A 40-year-old man was diagnosed with metastatic insulinoma after 5 months of symptomatic hypoglycemia. Within 1 month post PRRT, the patient became euglycemic but developed a pigmented, pruritic rash which was confirmed on biopsy as AN. We discuss the rare manifestation of AN in subjects with insulinoma, the role of insulin in the pathogenesis of AN, malignant AN in non-insulin-secreting malignancies and association with other insulin-resistant endocrinopathies such as acromegaly.

Learning points

  • Acanthosis nigricans (AN) is a common dermatosis which is typically asymptomatic and associated with the hyperinsulinemic state.

  • Malignant AN can rapidly spread, cause pruritus and affect mucosa and the oral cavity.

  • AN is extremely rare in patients with insulinoma despite marked hyperinsulinemia.

  • Peptide receptor radionuclide therapy might have triggered TGF-α secretion in this subject which led to malignant AN.

  • Rapid spread or unusual distribution of pruritic AN warrants further investigation to exclude underlying malignancy.

Open access
Adrian Po Zhu Li Department of Endocrinology ASO/EASO COM, King ’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK

Search for other papers by Adrian Po Zhu Li in
Google Scholar
PubMed
Close
,
Sheela Sathyanarayan Department of Endocrinology ASO/EASO COM, King ’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK

Search for other papers by Sheela Sathyanarayan in
Google Scholar
PubMed
Close
,
Salvador Diaz-Cano Departments of Cellular Pathology and Molecular Pathology, Queen Elizabeth Hospital, Birmingham, UK
Division of Cancer Studies, King’s College London, London, UK

Search for other papers by Salvador Diaz-Cano in
Google Scholar
PubMed
Close
,
Sobia Arshad Department of Endocrinology ASO/EASO COM, King ’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK

Search for other papers by Sobia Arshad in
Google Scholar
PubMed
Close
,
Eftychia E Drakou Department of Clinical Oncology, Guy’s Cancer Centre – Guy’s and St Thomas’ NHS Foundation Trust, Great Maze Pond, London, UK

Search for other papers by Eftychia E Drakou in
Google Scholar
PubMed
Close
,
Royce P Vincent Department of Clinical Biochemistry, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK
Faculty of Life Sciences and Medicine, School of Life Course Sciences, King’s College London, London, UK

Search for other papers by Royce P Vincent in
Google Scholar
PubMed
Close
,
Ashley B Grossman Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
Barts and the London School of Medicine, Centre for Endocrinology, William Harvey Institute, London, UK
Neuroendocrine Tumour Unit, Royal Free Hospital, London, UK

Search for other papers by Ashley B Grossman in
Google Scholar
PubMed
Close
,
Simon J B Aylwin Department of Endocrinology ASO/EASO COM, King ’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK

Search for other papers by Simon J B Aylwin in
Google Scholar
PubMed
Close
, and
Georgios K Dimitriadis Department of Endocrinology ASO/EASO COM, King ’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK
Obesity, Type 2 Diabetes and Immunometabolism Research Group, Department of Diabetes, Faculty of Life Sciences, School of Life Course Sciences, King’s College London, London, UK
Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, UK

Search for other papers by Georgios K Dimitriadis in
Google Scholar
PubMed
Close

Summary

A 49-year-old teacher presented to his general physician with lethargy and lower limb weakness. He had noticed polydipsia, polyuria, and had experienced weight loss, albeit with an increase in central adiposity. He had no concomitant illnesses and took no regular medications. He had hypercalcaemia (adjusted calcium: 3.34 mmol/L) with hyperparathyroidism (parathyroid hormone: 356 ng/L) and hypokalaemia (K: 2.7 mmol/L) and was admitted for i.v. potassium replacement. A contrast-enhanced CT chest/abdomen/pelvis scan revealed a well-encapsulated anterior mediastinal mass measuring 17 × 11 cm with central necrosis, compressing rather than invading adjacent structures. A neck ultrasound revealed a 2 cm right inferior parathyroid lesion. On review of CT imaging, the adrenals appeared normal, but a pancreatic lesion was noted adjacent to the uncinate process. His serum cortisol was 2612 nmol/L, and adrenocorticotrophic hormone was elevated at 67 ng/L, followed by inadequate cortisol suppression to 575 nmol/L from an overnight dexamethasone suppression test. His pituitary MRI was normal, with unremarkable remaining anterior pituitary biochemistry. His admission was further complicated by increased urine output to 10 L/24 h and despite three precipitating factors for the development of diabetes insipidus including hypercalcaemia, hypokalaemia, and hypercortisolaemia, due to academic interest, a water deprivation test was conducted. An 18flurodeoxyglucose-PET (FDG-PET) scan demonstrated high avidity of the mediastinal mass with additionally active bilateral superior mediastinal nodes. The pancreatic lesion was not FDG avid. On 68Ga DOTATE-PET scan, the mediastinal mass was moderately avid, and the 32 mm pancreatic uncinate process mass showed significant uptake. Genetic testing confirmed multiple endocrine neoplasia type 1.

Learning points

  • In young patients presenting with primary hyperparathyroidism, clinicians should be alerted to the possibility of other underlying endocrinopathies.

    In patients with multiple endocrine neoplasia type 1 (MEN-1) and ectopic adrenocorticotrophic hormone syndrome (EAS), clinicians should be alerted to the possibility of this originating from a neoplasm above or below the diaphragm.

  • Although relatively rare compared with sporadic cases, thymic carcinoids secondary to MEN-1 may also be associated with EAS.

  • Electrolyte derangement, in particular hypokalaemia and hypercalcaemia, can precipitate mild nephrogenic diabetes insipidus.

Open access
Anthony Ramos-Yataco National University of San Marcos, Nasca, Perú
Ricardo Cruzado Rivarola Hospital, Nasca, Perú

Search for other papers by Anthony Ramos-Yataco in
Google Scholar
PubMed
Close
,
Kelly Meza Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medicine, New York, USA

Search for other papers by Kelly Meza in
Google Scholar
PubMed
Close
,
Reyna Cecilia Farfán-García Ricardo Cruzado Rivarola Hospital, Nasca, Perú

Search for other papers by Reyna Cecilia Farfán-García in
Google Scholar
PubMed
Close
,
Solange Ortega-Rojas Ricardo Cruzado Rivarola Hospital, Nasca, Perú

Search for other papers by Solange Ortega-Rojas in
Google Scholar
PubMed
Close
,
Isaac Salinas-Mamani Ricardo Cruzado Rivarola Hospital, Nasca, Perú

Search for other papers by Isaac Salinas-Mamani in
Google Scholar
PubMed
Close
,
Ivonne Silva-Arrieta Ontaneda Ricardo Cruzado Rivarola Hospital, Nasca, Perú

Search for other papers by Ivonne Silva-Arrieta Ontaneda in
Google Scholar
PubMed
Close
, and
Ricardo Correa University of Arizona College of Medicine Phoenix and Phoenix VAMC, Phoenix, Arizona, USA

Search for other papers by Ricardo Correa in
Google Scholar
PubMed
Close

Summary

The first case of the novel coronavirus infection (COVID-19) in Peru was reported on March 6, 2020. As of September 7, 2020, about 700 000 cases of COVID-19 resulting in 29,976 deaths have been confirmed by the Ministry of Health. Among COVID-19 patients with co-morbidities, type 2 diabetes mellitus (T2DM) has been recognized as a risk factor for severe disease. Patients with T2DM may experience diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic (HHS) if infected with the coronavirus 2 (SARS-CoV-2). Regular blood analysis including arterial blood gas is essential in monitoring the care of patients with T2DM infected with COVID-19. We report five cases of DKA in patients with underlying T2DM that presented with severe COVID-19 infection.

Learning points:

  • COVID-19 may cause acute metabolic dysregulations in patients with T2DM.

  • It is important to monitor basic metabolic panel (BMP) and arterial blood gases (ABGs) in patients with COVID-19 since metabolic complications can develop unexpectedly.

  • Patients with T2DM develop an inflammatory syndrome characterized by severe insulin resistance and B cell dysfunction that can lead to DKA.

Open access
Janani Devaraja Sheffield Children’s Hospital NHS Trust, Sheffield, UK

Search for other papers by Janani Devaraja in
Google Scholar
PubMed
Close
,
Charlotte Elder Sheffield Children’s Hospital NHS Trust, Sheffield, UK

Search for other papers by Charlotte Elder in
Google Scholar
PubMed
Close
, and
Adrian Scott Academic Directorate of Diabetes & Endocrinology at Sheffield Teaching Hospital NHS Trust, Sheffield, UK

Search for other papers by Adrian Scott in
Google Scholar
PubMed
Close

Summary

This case report describes a family pedigree of a mother and her children with an E227K mutation in the KCNJ11 gene. People with this particular gene mutation typically present with transient neonatal diabetes; with more than half the cohort relapsing into permanent diabetes in adolescence or early adulthood. However, the mother developed diabetes as an adolescent and thus was initially diagnosed as having Type 1 Diabetes. All her children have inherited the same genetic mutation but with differing presentations. Her second, third and fourth child presented with transient neonatal diabetes which remitted at varying times. Her first child is 16 years old but had not developed diabetes at the time of writing. The KCNJ11 gene codes for the KIR6.2 subunit of the KATP channels of the pancreatic beta cells. Mutations in this gene limit insulin release from beta cells despite high blood glucose concentrations. Most people with diabetes caused by this genetic mutation can be successfully managed with glibenclamide. Learning of the genetic mutation changed the therapeutic approach to the mother’s diabetes and enabled rapid diagnosis for her children. Through this family, we identified that an identical genetic mutation does not necessarily lead to the same diabetic phenotype. We recommend clinicians to consider screening for this gene in their patients whom MODY is suspected; especially in those presenting before the age of 25 who remain C-peptide positive.

Learning points:

  • KATP channel closure in pancreatic beta cells is a critical step in stimulating insulin release. Mutations in the KIR6.2 subunit can result in the KATP channels remaining open, limiting insulin release.

  • People with KCNJ11 mutations may not present with neonatal diabetes as the age of presentation of diabetes can be highly variable.

  • Most affected individuals can be treated successfully with glibenclamide, which closes the KATP channels via an independent mechanism.

  • All first degree relatives of the index case should be offered genetic testing, including asymptomatic individuals. Offspring of affected individuals should be monitored for neonatal diabetes from birth.

  • Affected individuals will require long-term follow-up as there is a high risk of recurrence in later life.

Open access