Browse

You are looking at 1 - 10 of 16 items for :

Clear All
Open access

Shivani Patel, Venessa Chin and Jerry R Greenfield

Summary

Durvalumab is a programmed cell death ligand 1 inhibitor, which is now approved in Australia for use in non-small-cell lung and urothelial cancers. Autoimmune diabetes is a rare immune-related adverse effect associated with the use of immune checkpoint inhibitor therapy. It is now being increasingly described reflecting the wider use of immune checkpoint inhibitor therapy. We report the case of a 49-year-old female who presented with polyuria, polydipsia and weight loss, 3 months following the commencement of durvalumab. On admission, she was in severe diabetic ketoacidosis with venous glucose: 20.1 mmol/L, pH: 7.14, bicarbonate 11.2 mmol/L and serum beta hydroxybutyrate: >8.0 mmol/L. She had no personal or family history of diabetes or autoimmune disease. Her HbA1c was 7.8% and her glutamic acid decarboxylase (GAD) antibodies were mildly elevated at 2.2 mU/L (reference range: <2 mU/L) with negative zinc transporter 8 (ZnT8) and islet cell (ICA) antibodies. Her fasting C-peptide was low at 86 pmol/L (reference range: 200–1200) with a corresponding serum glucose of 21.9 mmol/L. She was promptly stabilised with an insulin infusion in intensive care and discharged on basal bolus insulin. Durvalumab was recommenced once her glycaemic control had stabilised. Thyroid function tests at the time of admission were within normal limits with negative thyroid autoantibodies. Four weeks post discharge, repeat thyroid function tests revealed hypothyroidism, with an elevated thyroid-stimulating hormone (TSH) at 6.39 mIU/L (reference range: 0.40–4.80) and low free T4: 5.9 pmol/L (reference range: 8.0–16.0). These findings persisted with repeat testing despite an absence of clinical symptoms. Treatment with levothyroxine was commenced after excluding adrenal insufficiency (early morning cortisol: 339 nmol/L) and hypophysitis (normal pituitary on MRI).

Learning points:

  • Durvalumab use is rarely associated with fulminant autoimmune diabetes, presenting with severe DKA.
  • Multiple endocrinopathies can co-exist with the use of a single immune checkpoint inhibitors; thus, patients should be regularly monitored.
  • Regular blood glucose levels should be performed on routine pathology on all patients on immune checkpoint inhibitor.
  • Clinician awareness of immunotherapy-related diabetes needs to increase in an attempt to detect hyperglycaemia early and prevent DKA.
Open access

Khaled Aljenaee, Osamah Hakami, Colin Davenport, Gemma Farrell, Tommy Kyaw Tun, Agnieszka Pazderska, Niamh Phelan, Marie-Louise Healy, Seamus Sreenan and John H McDermott

Summary

Measurement of glycated haemoglobin (HbA1c) has been utilised in assessing long-term control of blood glucose in patients with diabetes, as well as diagnosing diabetes and identifying patients at increased risk of developing diabetes in the future. HbA1c reflects the level of blood glucose to which the erythrocyte has been exposed during its lifespan, and there are a number of clinical situations affecting the erythrocyte life span in which HbA1c values may be spuriously high or low and therefore not reflective of the true level of glucose control. In the present case series, we describe the particulars of three patients with diabetes who had spuriously low HbA1c levels as a result of dapsone usage. Furthermore, we discuss the limitations of HbA1c testing and the mechanisms by which it may be affected by dapsone in particular.

Learning points:

  • Various conditions and medications can result in falsely low HbA1c.
  • Dapsone can lead to falsely low HbA1c by inducing haemolysis and by forming methaemoglobin.
  • Capillary glucose measurement, urine glucose measurements and fructosamine levels should be used as alternatives to HbA1c for monitoring glycaemic control if it was falsely low or high.
Open access

Jose León Mengíbar, Ismael Capel, Teresa Bonfill, Isabel Mazarico, Laia Casamitjana Espuña, Assumpta Caixàs and Mercedes Rigla

Summary

Durvalumab, a human immunoglobulin G1 kappa monoclonal antibody that blocks the interaction of programmed cell death ligand 1 (PD-L1) with the PD-1 and CD80 (B7.1) molecules, is increasingly used in advanced neoplasias. Durvalumab use is associated with increased immune-related adverse events. We report a case of a 55-year-old man who presented to our emergency room with hyperglycaemia after receiving durvalumab for urothelial high-grade non-muscle-invasive bladder cancer. On presentation, he had polyuria, polyphagia, nausea and vomiting, and laboratory test revealed diabetic ketoacidosis (DKA). Other than durvalumab, no precipitating factors were identified. Pre-durvalumab blood glucose was normal. The patient responded to treatment with intravenous fluids, insulin and electrolyte replacement. Simultaneously, he presented a thyroid hormone pattern that evolved in 10 weeks from subclinical hyperthyroidism (initially attributed to iodinated contrast used in a previous computerised tomography) to overt hyperthyroidism and then to severe primary hypothyroidism (TSH: 34.40 µU/mL, free thyroxine (FT4): <0.23 ng/dL and free tri-iodothyronine (FT3): 0.57 pg/mL). Replacement therapy with levothyroxine was initiated. Finally, he was tested positive for anti-glutamic acid decarboxylase (GAD65), anti-thyroglobulin (Tg) and antithyroid peroxidase (TPO) antibodies (Abs) and diagnosed with type 1 diabetes mellitus (DM) and silent thyroiditis caused by durvalumab. When durvalumab was stopped, he maintained the treatment of multiple daily insulin doses and levothyroxine. Clinicians need to be alerted about the development of endocrinopathies, such as DM, DKA and primary hypothyroidism in the patients receiving durvalumab.

Learning points:

  • Patients treated with anti-PD-L1 should be screened for the most common immune-related adverse events (irAEs).
  • Glucose levels and thyroid function should be monitored before and during the treatment.
  • Durvalumab is mainly associated with thyroid and endocrine pancreas dysfunction.
  • In the patients with significant autoimmune background, risk–benefit balance of antineoplastic immunotherapy should be accurately assessed.
Open access

Suguru Watanabe, Jun Kido, Mika Ogata, Kimitoshi Nakamura and Tomoyuki Mizukami

Summary

Hyperglycemic hyperosmolar state (HHS) and diabetic ketoacidosis (DKA) are the most severe acute complications of diabetes mellitus (DM). HHS is characterized by severe hyperglycemia and hyperosmolality without significant ketosis and acidosis. A 14-year-old Japanese boy presented at the emergency room with lethargy, polyuria and polydipsia. He belonged to a baseball club team and habitually drank sugar-rich beverages daily. Three weeks earlier, he suffered from lassitude and developed polyuria and polydipsia 1 week later. He had been drinking more sugar-rich isotonic sports drinks (approximately 1000–1500 mL/day) than usual (approximately 500 mL/day). He presented with HHS (hyperglycemia (1010 mg/dL, HbA1c 12.3%) and mild hyperosmolality (313 mOsm/kg)) without acidosis (pH 7.360), severe ketosis (589 μmol/L) and ketonuria. He presented HHS in type 1 diabetes mellitus (T1DM) with elevated glutamate decarboxylase antibody and islet antigen 2 antibody. Consuming beverages with high sugar concentrations caused hyperglycemia and further exacerbates thirst, resulting in further beverage consumption. Although he recovered from HHS following intensive transfusion and insulin treatment, he was significantly sensitive to insulin therapy. Even the appropriate amount of insulin may result in dramatically decreasing blood sugar levels in patients with T1DM. We should therefore suspect T1DM in patients with HHS but not those with obesity. Moreover, age, clinical history and body type are helpful for identifying T1DM and HHS. Specifically, drinking an excess of beverages rich in sugars represents a risk of HHS in juvenile/adolescent T1DM patients.

Learning points:

  • Hyperglycemic hyperosmolar state (HHS) is characterized by severe hyperglycemia and hyperosmolality without significant ketosis and acidosis.
  • The discrimination between HHS of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) in initial presentation is difficult.
  • Pediatrician should suspect T1DM in patients with HHS but not obesity.
  • Age, clinical history and body type are helpful for identifying T1DM and HHS.
  • Children with T1DM are very sensitive to insulin treatment, and even appropriate amount of insulin may result in dramatically decreasing blood sugar levels.
Open access

Aoife Garrahy, Matilde Bettina Mijares Zamuner and Maria M Byrne

Summary

Coexistence of autoimmune diabetes and maturity-onset diabetes of the young (MODY) is rare. We report the first case of coexisting latent autoimmune diabetes of adulthood (LADA) and glucokinase (GCK) MODY. A 32-year-old woman was treated with insulin for gestational diabetes at age 32 years; post-partum, her fasting blood glucose was 6.0 mmol/L and 2-h glucose was 11.8 mmol/L following an oral glucose tolerance test, and she was maintained on diet alone. Five years later, a diagnosis of LADA was made when she presented with fasting blood glucose of 20.3 mmol/L and HbA1C 125 mmol/mol (13.6%). GCK-MODY was identified 14 years later when genetic testing was prompted by identification of a mutation in her cousin. Despite multiple daily insulin injections her glycaemic control remained above target and her clinical course has been complicated by multiple episodes of hypoglycaemia with unawareness. Although rare, coexistence of latent autoimmune diabetes of adulthood and monogenic diabetes should be considered if there is a strong clinical suspicion, for example, family history. Hypoglycaemic unawareness developed secondary to frequent episodes of hypoglycaemia using standard glycaemic targets for LADA. This case highlights the importance of setting fasting glucose targets within the expected range for GCK-MODY in subjects with coexisting LADA.

Learning points:

  • We report the first case of coexisting latent autoimmune diabetes of adulthood (LADA) and GCK-MODY.
  • It has been suggested that mutations in GCK may lead to altered counter-regulation and recognition of hypoglycaemia at higher blood glucose levels than patients without such mutation. However, in our case, hypoglycaemic unawareness developed secondary to frequent episodes of hypoglycaemia using standard glycaemic targets for LADA.
  • This case highlights the importance of setting fasting glucose targets within the expected range for GCK-MODY in subjects with coexisting LADA to avoid hypoglycaemia.
Open access

Sebastian Hörber, Sarah Hudak, Martin Kächele, Dietrich Overkamp, Andreas Fritsche, Hans-Ulrich Häring, Andreas Peter and Martin Heni

Summary

Diabetic ketoacidosis is a life-threatening complication of diabetes mellitus. It usually occurs in patients with type 1 diabetes where it is typically associated with only moderately increased blood glucose. Here, we report the case of a 52-year-old female patient who was admitted to the emergency unit with severely altered mental status but stable vital signs. Laboratory results on admission revealed very high blood glucose (1687 mg/dL/93.6 mmol/L) and severe acidosis (pH <7) with proof of ketone bodies in serum and urine. Past history revealed a paranoid schizophrenia diagnosed 10 years ago and for which the patient was treated with risperidone for many years. Acute treatment with intravenous fluids, intravenous insulin infusion and sodium bicarbonate improved the symptoms. Further laboratory investigations confirmed diagnosis of autoimmune type 1 diabetes. After normalization of blood glucose levels, the patient could soon be discharged with a subcutaneous insulin therapy.

Learning points:

  • Diabetic ketoacidosis as first manifestation of type 1 diabetes can occur with markedly elevated blood glucose concentrations in elder patients.
  • Atypical antipsychotics are associated with hyperglycemia and an increased risk of new-onset diabetes.
  • First report of risperidone-associated diabetic ketoacidosis in new-onset type 1 diabetes.
  • Patients treated with atypical antipsychotics require special care and regular laboratory examinations to detect hyperglycemia and diabetic ketoacidosis.
  • In cases when the diagnosis is in doubt, blood gas analysis as well as determination of C-peptide and islet autoantibodies can help to establish the definite diabetes type.
Open access

Senhong Lee, Aparna Morgan, Sonali Shah and Peter R Ebeling

Summary

We report a case of a 67-year-old man with type 2 diabetes presented with diabetic ketoacidosis, two weeks after his first dose of nivolumab therapy for non–small-cell lung carcinoma. He was started on empagliflozin two days prior in the setting of hyperglycaemia after the initiation of nivolumab therapy. Laboratory evaluation revealed an undetectable C-peptide and a positive anti-glutamic acid decarboxylase (GAD) antibody. He was treated with intravenous fluids and insulin infusion and was subsequently transitioned to subcutaneous insulin and discharged home. He subsequently has developed likely autoimmune thyroiditis and autoimmune encephalitis.

Learning points:

  • Glycemic surveillance in patients receiving immune checkpoint inhibitors is recommended.
  • Early glycemic surveillance after commencement of anti-programmed cell death-1 (PD-1) inhibitors may be indicated in selected populations, including patients with underlying type 2 diabetes mellitus and positive anti-glutamic acid decarboxylase (GAD) antibody.
  • Sodium-glucose co transporter-2 (SGLT2) inhibitors should be used with caution in patients on immunotherapy.
Open access

Akihiko Ando, Shoichiro Nagasaka and Shun Ishibashi

Summary

We report a case of a woman with diabetes mellitus caused by a genetic defect in ABCC8-coding sulfonylurea receptor 1 (SUR1), a subunit of the ATP-sensitive potassium (KATP) channel protein. She was diagnosed with diabetes at 7 days after birth. After intravenous insulin drip for 1 month, her hyperglycaemia remitted. At the age of 13 years, her diabetes relapsed, and after that she had been treated by intensive insulin therapy for 25 years with relatively poor glycaemic control. She was switched to oral sulfonylurea therapy and attained euglycaemia. In addition, her insulin secretory capacity was ameliorated gradually.

Learning points:

  • Genetic testing should be considered in any individuals or family with diabetes that occurred within the first year or so of life.
  • Sulfonylurea can achieve good glycaemic control in patients with KATP channel mutations by restoring endogenous insulin secretion, even if they were treated with insulin for decades.
  • Early screening and genetic testing are important to improve the prognosis of patients with neonatal diabetes mellitus arising from ABCC8 or KCNJ11 mutation.
Open access

Ploutarchos Tzoulis, Richard W Corbett, Swarupini Ponnampalam, Elly Baker, Daniel Heaton, Triada Doulgeraki and Justin Stebbing

Summary

Five days following the 3rd cycle of nivolumab, a monoclonal antibody, which acts as immune checkpoint inhibitor against the programmed cell death protein-1, for metastatic lung adenocarcinoma, a 56-year-old woman presented at the hospital critically ill. On admission, she had severe diabetic ketoacidosis (DKA), as evidenced by venous glucose of 47 mmol/L, blood ketones of 7.5 mmol/L, pH of 6.95 and bicarbonate of 6.6 mmol/L. She has had no personal or family history of diabetes mellitus (DM), while random venous glucose, measured 1 week prior to hospitalisation, was 6.1 mmol/L. On admission, her HbA1c was 8.2% and anti-GAD antibodies were 12 kIU/L (0–5 kU/L), while islet cell antibodies and serum C-peptide were undetectable. Nivolumab was recommenced without the development of other immune-mediated phenomena until 6 months later, when she developed hypothyroidism with TSH 18 U/L and low free T4. She remains insulin dependent and has required levothyroxine replacement, while she has maintained good radiological and clinical response to immunotherapy. This case is notable for the rapidity of onset and profound nature of DKA at presentation, which occurred two months following commencement of immunotherapy. Despite the association of nivolumab with immune-mediated endocrinopathies, only a very small number of patients developing type 1 DM has been reported to date. Patients should be closely monitored for hyperglycaemia and thyroid dysfunction prior to and periodically during immunotherapy.

Learning points:

  • Nivolumab can induce fulminant type 1 diabetes, resulting in DKA.
  • Nivolumab is frequently associated with thyroid dysfunction, mostly hypothyroidism.
  • Nivolumab-treated patients should be monitored regularly for hyperglycaemia and thyroid dysfunction.
  • Clinicians should be aware and warn patients of potential signs and symptoms of severe hyperglycaemia.
Open access

Anna Kopczak, Adrian-Minh Schumacher, Sandra Nischwitz, Tania Kümpfel, Günter K Stalla and Matthias K Auer

Summary

The autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) syndrome is a genetic disorder caused by a mutation in the autoimmune regulator (AIRE) gene. Immune deficiency, hypoparathyroidism and Addison’s disease due to autoimmune dysfunction are the major clinical signs of APECED. We report on a 21-year-old female APECED patient with two inactivating mutations in the AIRE gene. She presented with sudden onset of periodic nausea. Adrenal insufficiency was diagnosed by means of the ACTH stimulation test. Despite initiation of hormone replacement therapy with hydrocortisone and fludrocortisone, nausea persisted and the patient developed cognitive deficits and a loss of interest which led to the diagnosis of depression. She was admitted to the psychiatric department for further diagnostic assessment. An EEG showed a focal epileptic pattern. Glutamic acid decarboxylase (GAD) antibodies, which had been negative eight years earlier, were now elevated in serum and in the cerebrospinal fluid. Oligoclonal bands were positive indicating an inflammatory process with intrathecal antibody production in the central nervous system (CNS). The periodic nausea was identified as dialeptic seizures, which clinically presented as gastrointestinal aura followed by episodes of reduced consciousness that occurred about 3–4 times per day. GAD antibody-associated limbic encephalitis (LE) was diagnosed. Besides antiepileptic therapy, an immunosuppressive treatment with corticosteroids was initiated followed by azathioprine. The presence of nausea and vomiting in endocrine patients with autoimmune disorders is indicative of adrenal insufficiency. However, our case report shows that episodic nausea may be a symptom of epileptic seizures due to GAD antibodies-associated LE in patients with APECED.

Learning points:

  • Episodic nausea cannot only be a sign of Addison’s disease, but can also be caused by epileptic seizures with gastrointestinal aura due to limbic encephalitis.
  • GAD antibodies are not only found in diabetes mellitus type 1, but they are also associated with autoimmune limbic encephalitis and can appear over time.
  • Limbic encephalitis can be another manifestation of autoimmune disease in patients with APECED/APS-1 that presents over the time course of the disease.