Browse

You are looking at 1 - 10 of 21 items for :

  • Dopamine agonists x
Clear All
Open access

Sakshi Jhawar, Rahul Lakhotia, Mari Suzuki, James Welch, Sunita K Agarwal, John Sharretts, Maria Merino, Mark Ahlman, Jenny E Blau, William F Simonds and Jaydira Del Rivero

Summary

Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant condition characterized by parathyroid, anterior pituitary and enteropancreatic endocrine cell tumors. Neuroendocrine tumors occur in approximately in 5–15% of MEN1 patients. Very few cases of ovarian NETs have been reported in association with clinical MEN1 and without genetic testing confirmation. Thirty-three-year-old woman with MEN1 was found to have right adnexal mass on computed tomography (CT). Attempt at laparoscopic removal was unsuccessful, and mass was removed via a minilaparotomy in piecemeal fashion. Pathology showed ovarian NET arising from a teratoma. Four years later, patient presented with recurrence involving the pelvis and anterior abdominal wall. She was treated with debulking surgery and somatostatin analogs (SSAs). Targeted DNA sequencing analysis on the primary adnexal mass as well as the recurrent abdominal wall tumor confirmed loss of heterozygosity (LOH) at the MEN1 gene locus. This case represents to our knowledge, the first genetically confirmed case of ovarian NET arising by a MEN1 mechanism in a patient with MEN1. Extreme caution should be exercised during surgery as failure to remove an ovarian NET en masse can result in peritoneal seeding and recurrence. For patients with advanced ovarian NETs, systemic therapy options include SSAs, peptide receptor radioligand therapy (PRRT) and novel agents targeting mammalian target of rapamycin (mTOR) and vascular endothelial growth factor (VEGF).

Learning points:

  • Ovarian NET can arise from a MEN1 mechanism, and any adnexal mass in a MEN1 patient can be considered as a possible malignant NET.

  • Given the rarity of this disease, limited data are available on prognostication and treatment. Management strategies are extrapolated from evidence available in NETs from primaries of other origins.

  • Care should be exercised to remove ovarian NETs en bloc as failure to do so may result in peritoneal seeding and recurrence.

  • Treatment options for advanced disease include debulking surgery, SSAs, TKIs, mTOR inhibitors, PRRT and chemotherapy.

Open access

Benedetta Zampetti, Giorgia Simonetti, Roberto Attanasio, Antonio Silvani and Renato Cozzi

Summary

We describe the 20-year course of a 63-year-old male with a macroprolactinoma that acquired resistance to treatment and aggressive behavior after a 4-year successful treatment with cabergoline. He was submitted to multiple surgical resections by a skilled surgeon, fractionated radiotherapy and was eventually treated with temozolomide. After a first 6-month standard cycle, a relapse occurred and he was treated again successfully.

Learning points:

  • Prolactinomas are the most frequent type of pituitary adenoma.

  • They usually have a benign course.

  • In most cases dopamine-agonist drugs, mainly cabergoline, are first-line (and usually only) treatment.

  • Occasionally prolactinomas can have or acquire resistance to treatment and/or aggressive behavior.

  • Temozolomide (TMZ), an oral alkylating drug, can be effective in such aggressive tumors.

  • Multimodal treatment (surgery, radiation, cabergoline and TMZ) is warranted in aggressive pituitary tumors.

  • We describe here successful rechallenge with TMZ after relapse occurring 18 months after a first TMZ cycle.

Open access

Michelle Maher, Federico Roncaroli, Nigel Mendoza, Karim Meeran, Natalie Canham, Monika Kosicka-Slawinska, Birgitta Bernhard, David Collier, Juliana Drummond, Kassiani Skordilis, Nicola Tufton, Anastasia Gontsarova, Niamh Martin, Márta Korbonits and Florian Wernig

Summary

Symptomatic pituitary adenomas occur with a prevalence of approximately 0.1% in the general population. It is estimated that 5% of pituitary adenomas occur in a familial setting, either in isolated or syndromic form. Recently, loss-of-function mutations in genes encoding succinate dehydrogenase subunits (SDHx) or MYC-associated factor X (MAX) have been found to predispose to pituitary adenomas in co-existence with paragangliomas or phaeochromocytomas. It is rare, however, for a familial SDHx mutation to manifest as an isolated pituitary adenoma. We present the case of a pituitary lactotroph adenoma in a patient with a heterozygous germline SDHB mutation, in the absence of concomitant neoplasms. Initially, the adenoma showed biochemical response but poor tumour shrinkage in response to cabergoline; therefore, transsphenoidal surgery was performed. Following initial clinical improvement, tumour recurrence was identified 15 months later. Interestingly, re-initiation of cabergoline proved successful and the lesion demonstrated both biochemical response and tumour shrinkage. Our patient’s SDHB mutation was identified when we realised that her father had a metastatic paraganglioma, prompting genetic testing. Re-inspection of the histopathological report of the prolactinoma confirmed cells with vacuolated cytoplasm. This histological feature is suggestive of an SDHx mutation and should prompt further screening for mutations by immunohistochemistry and/or genetic testing. Surprisingly, immunohistochemistry of this pituitary adenoma demonstrated normal SDHB expression, despite loss of SDHB expression in the patient’s father’s paraganglioma.

Learning points:

  • Pituitary adenomas may be the presenting and/or sole feature of SDHB mutation-related disease.

  • SDHx mutated pituitary adenomas may display clinically aggressive behaviour and demonstrate variable response to medical treatment.

  • Histological evidence of intracytoplasmic vacuoles in a pituitary adenoma might suggest an SDH-deficient tumour and should prompt further screening for SDHx mutations.

  • Immunohistochemistry may not always predict the presence of SDHx mutations.

Open access

Anne de Bray, Zaki K Hassan-Smith, Jamal Dirie, Edward Littleton, Swarupsinh Chavda, John Ayuk, Paul Sanghera and Niki Karavitaki

Summary

A 48-year-old man was diagnosed with a large macroprolactinoma in 1982 treated with surgery, adjuvant radiotherapy and bromocriptine. Normal prolactin was achieved in 2005 but in 2009 it started rising. Pituitary MRIs in 2009, 2012, 2014 and 2015 were reported as showing empty pituitary fossa. Prolactin continued to increase (despite increasing bromocriptine dose). Trialling cabergoline had no effect (prolactin 191,380 mU/L). In January 2016, he presented with right facial weakness and CT head was reported as showing no acute intracranial abnormality. In late 2016, he was referred to ENT with hoarse voice; left hypoglossal and recurrent laryngeal nerve palsies were found. At this point, prolactin was 534,176 mU/L. Just before further endocrine review, he had a fall and CT head showed a basal skull mass invading the left petrous temporal bone. Pituitary MRI revealed a large enhancing mass within the sella infiltrating the clivus, extending into the left petrous apex and occipital condyle with involvement of the left Meckel’s cave, internal acoustic meatus, jugular foramen and hypoglossal canal. At that time, left abducens nerve palsy was also present. CT thorax/abdomen/pelvis excluded malignancy. Review of previous images suggested that this lesion had started becoming evident below the fossa in pituitary MRI of 2015. Temozolomide was initiated. After eight cycles, there is significant tumour reduction with prolactin 1565 mU/L and cranial nerve deficits have remained stable. Prolactinomas can manifest aggressive behaviour even decades after initial treatment highlighting the unpredictable clinical course they can demonstrate and the need for careful imaging review.

Learning points:

  • Aggressive behaviour of prolactinomas can manifest even decades after first treatment highlighting the unpredictable clinical course these tumours can demonstrate.

  • Escape from control of hyperprolactinaemia in the absence of sellar adenomatous tissue requires careful and systematic search for the anatomical localisation of the lesion responsible for the prolactin excess.

  • Temozolomide is a valuable agent in the therapeutic armamentarium for aggressive/invasive prolactinomas, particularly if they are not amenable to other treatment modalities.

Open access

W K M G Amarawardena, K D Liyanarachchi, J D C Newell-Price, R J M Ross, D Iacovazzo and M Debono

Summary

The granulation pattern of somatotroph adenomas is well known to be associated with differing clinical and biochemical characteristics, and it has been shown that sparsely granulated tumours respond poorly to commonly used somatostatin receptor ligands (SRLs). We report a challenging case of acromegaly with a sparsely granulated tumour resistant to multiple modalities of treatment, ultimately achieving biochemical control with pasireotide. A 26-year-old lady presented with classical features of acromegaly, which was confirmed by an oral glucose tolerance test. Insulin-like growth factor 1 (IGF1) was 1710 µg/L (103–310 µg/L) and mean growth hormone (GH) was >600 U/L. MRI scan showed a 4 cm pituitary macroadenoma with suprasellar extension and right-sided cavernous sinus invasion. She underwent trans-sphenoidal pituitary surgery. Histology displayed moderate amounts of sparsely granular eosinophilic cytoplasm, staining only for GH. Postoperative investigations showed uncontrolled disease (IGF1:1474 µg/L, mean GH:228 U/L) and residual tumour in the cavernous sinus. She received external beam fractionated radiation. Over the years, she received octreotide LAR (up to 30 mg), lanreotide (up to 120 mg) two weekly, cabergoline, pegvisomant and stereotactic radiosurgery to no avail. Only pegvisomant resulted in an element of disease control; however, this had to be stopped due to abnormal liver function tests. Fifteen years after the diagnosis, she was started on pasireotide 40 mg monthly. Within a month, her IGF1 dropped and has remained within the normal range (103–310 µg/L). Pasireotide has been well tolerated, and there has been significant clinical improvement. Somatostatin receptor subtyping revealed a positivity score of two for both sst5 and sst2a subtypes.

Learning points:

  • Age, size of the tumour, GH levels on presentation, histopathological type and the somatostatin receptor status of the tumour in acromegaly should be reviewed in patients who poorly respond to first-generation somatostatin receptor ligands.

  • Tumours that respond poorly to first-generation somatostatin receptor ligands, especially sparsely granulated somatotroph adenomas, can respond to pasireotide and treatment should be considered early in the management of resistant tumours.

  • Patients with membranous expression of sst5 are likely to be more responsive to pasireotide.

Open access

Oscar D Bruno, Ricardo Fernández Pisani, Gabriel Isaac and Armando Basso

Summary

The role of mechanical forces influencing the growth of a pituitary adenoma is poorly understood. In this paper we report the case of a young man with hyperprolactinaemia and an empty sella secondary to hydrocephalia, who developed a macroprolactinoma following the relief of high intraventricular pressure.

Learning points:

  • The volume of a pituitary tumour may be influenced not only by molecular but also by local mechanical factors.

  • Intratumoural pressure, resistance of the sellar diaphragm and intracranial liquid pressure may play a role in the final size of a pituitary adenoma.

  • The presence of hydrocephalus may hide a pituitary macroadenoma.

Open access

Shinsuke Uraki, Hiroyuki Ariyasu, Asako Doi, Hiroto Furuta, Masahiro Nishi, Takeshi Usui, Hiroki Yamaue and Takashi Akamizu

Summary

A 54-year-old man had gastrinoma, parathyroid hyperplasia and pituitary tumor. His family history indicated that he might have multiple endocrine neoplasia type 1 (MEN1). MEN1 gene analysis revealed a heterozygous germline mutation (Gly156Arg). Therefore, we diagnosed him with MEN1. Endocrinological tests revealed that his serum prolactin (PRL) and plasma adrenocorticotropic hormone (ACTH) levels were elevated to 1699 ng/mL and 125 pg/mL respectively. Immunohistochemical analysis of the resected pancreatic tumors revealed that the tumors did not express ACTH. Overnight 0.5 and 8 mg dexamethasone suppression tests indicated that his pituitary tumor was a PRL-ACTH-producing plurihormonal tumor. Before transsphenoidal surgery, cabergoline was initiated. Despite no decrease in the volume of the pituitary tumor, PRL and ACTH levels decreased to 37.8 ng/mL and 57.6 pg/mL respectively. Owing to the emergence of metastatic gastrinoma in the liver, octreotide was initiated. After that, PRL and ACTH levels further decreased to 5.1 ng/mL and 19.7 pg/mL respectively. He died from liver dysfunction, and an autopsy of the pituitary tumor was performed. In the autopsy study, histopathological and immunohistochemical (IHC) analysis showed that the tumor was single adenoma and the cells were positive for ACTH, growth hormone (GH), luteinizing hormone (LH) and PRL. RT-PCR analysis showed that the tumor expressed mRNA encoding all anterior pituitary hormones, pituitary transcription factor excluding estrogen receptor (ER) β, somatostatin receptor (SSTR) 2, SSTR5 and dopamine receptor D (D2R). PRL-ACTH-producing tumor is a very rare type of pituitary tumor, and treatment with cabergoline and octreotide may be useful for controlling hormone levels secreted from a plurihormonal pituitary adenoma, as seen in this case of MEN1.

Learning points:

  • Although plurihormonal pituitary adenomas were reported to be more frequent in patients with MEN1 than in those without, the combination of PRL and ACTH is rare.

  • RT-PCR analysis showed that the pituitary tumor expressed various pituitary transcription factors and IHC analysis revealed that the tumor was positive for PRL, ACTH, GH and LH.

  • Generally, the effectiveness of dopamine agonist and somatostatin analog in corticotroph adenomas is low; however, if the plurihormonal pituitary adenoma producing ACTH expresses SSTR2, SSTR5 and D2R, medical therapy for the pituitary adenoma may be effective.

Open access

Nikolaos Kyriakakis, Jacqueline Trouillas, Mary N Dang, Julie Lynch, Paul Belchetz, Márta Korbonits and Robert D Murray

Summary

A male patient presented at the age of 30 with classic clinical features of acromegaly and was found to have elevated growth hormone levels, not suppressing during an oral glucose tolerance test. His acromegaly was originally considered to be of pituitary origin, based on a CT scan, which was interpreted as showing a pituitary macroadenoma. Despite two trans-sphenoidal surgeries, cranial radiotherapy and periods of treatment with bromocriptine and octreotide, his acromegaly remained active clinically and biochemically. A lung mass was discovered incidentally on a chest X-ray performed as part of a routine pre-assessment for spinal surgery 5 years following the initial presentation. This was confirmed to be a bronchial carcinoid tumour, which was strongly positive for growth hormone-releasing hormone (GHRH) and somatostatin receptor type 2 by immunohistochemistry. The re-examination of the pituitary specimens asserted the diagnosis of pituitary GH hyperplasia. Complete resolution of the patient’s acromegaly was achieved following right lower and middle lobectomy. Seventeen years following the successful resection of the bronchial carcinoid tumour the patient remains under annual endocrine follow-up for monitoring of the hypopituitarism he developed after the original interventions to his pituitary gland, while there has been no evidence of active acromegaly or recurrence of the carcinoid tumour. Ectopic acromegaly is extremely rare, accounting for <1% of all cases of acromegaly. Our case highlights the diagnostic challenges differentiating between ectopic acromegaly and acromegaly of pituitary origin and emphasises the importance of avoiding unnecessary pituitary surgery and radiotherapy. The role of laboratory investigations, imaging and histology as diagnostic tools is discussed.

Learning points:

  • Ectopic acromegaly is rare, accounting for less than 1% of all cases of acromegaly.

  • Ectopic acromegaly is almost always due to extra-pituitary GHRH secretion, mainly from neuroendocrine tumours of pancreatic or bronchial origin.

  • Differentiating between acromegaly of pituitary origin and ectopic acromegaly can cause diagnostic challenges due to similarities in clinical presentation and biochemistry.

  • Serum GHRH can be a useful diagnostic tool to diagnose ectopic acromegaly.

  • Pituitary imaging is crucial to differentiate between a pituitary adenoma and pituitary hyperplasia, which is a common finding in ectopic acromegaly.

  • Diagnosing ectopic acromegaly is pivotal to avoid unnecessary interventions to the pituitary and preserve normal pituitary function.

Open access

Emilia Sbardella, George Farah, Ahmed Fathelrahman, Simon Cudlip, Olaf Ansorge, Niki Karavitaki and Ashley B Grossman

Summary

Pituitary adenomas are a common intracranial neoplasm, usually demonstrating a benign phenotype. They can be classified according to pathological, radiological or clinical behaviour as typical, atypical or carcinomas, invasive or noninvasive, and aggressive or nonaggressive. Prolactinomas account for 40–60% of all pituitary adenomas, with dopamine agonists representing the first-line treatment and surgery/radiotherapy reserved for drug intolerance/resistance or in neuro-ophthalmological emergencies. We present the case of a 62-year-old man with an apparently indolent prolactin-secreting macroadenoma managed with partial resection and initially showing a biochemical response to cabergoline. Five years later, the tumour became resistant to cabergoline, despite a substantial increase in dosage, showing rapid growth and causing worsening of vision. The patient then underwent two further transsphenoidal operations and continued on high-dose cabergoline; despite these interventions, the tumour continued enlarging and prolactin increased to 107 269 U/L. Histology of the third surgical specimen demonstrated features of aggressive behaviour (atypical adenoma with a high cell proliferation index) not present in the tumour removed at the first operation. Subsequently, he was referred for radiotherapy aiming to control tumour growth.

Learning points:

  • The development of secondary resistance to dopamine agonists (DAs) is a serious sign as it may be associated with de-differentiation of the prolactinoma and thus of aggressive or malignant transformation.

  • Significant de-differentiation of the adenoma documented on consecutive histologies suggests a possible transition to malignancy.

  • A combination of histological ‘alarm’ features associated with persistent growth and escape from DAs treatment in recurrent adenomas should alert clinicians and demands close follow-up.

  • A multidisciplinary approach by pathologists, endocrinologists and neurosurgeons is essential.

Open access

Ekaterina Manuylova, Laura M Calvi, Catherine Hastings, G Edward Vates, Mahlon D Johnson, William T Cave Jr and Ismat Shafiq

Summary

Co-secretion of growth hormone (GH) and prolactin (PRL) from a single pituitary adenoma is common. In fact, up to 25% of patients with acromegaly may have PRL co-secretion. The prevalence of acromegaly among patients with a newly diagnosed prolactinoma is unknown. Given the possibility of mixed GH and PRL co-secretion, the current recommendation is to obtain an insulin-like growth factor-1 (IGF-1) in patients with prolactinoma at the initial diagnosis. Long-term follow-up of IGF-1 is not routinely done. Here, we report two cases of well-controlled prolactinoma on dopamine agonists with the development of acromegaly 10–20 years after the initial diagnoses. In both patients, a mixed PRL/GH-cosecreting adenoma was confirmed on the pathology examination after transsphenoidal surgery (TSS). Therefore, periodic routine measurements of IGF-1 should be considered regardless of the duration and biochemical control of prolactinoma.

Learning points:

  • Acromegaly can develop in patients with well-controlled prolactinoma on dopamine agonists.

  • The interval between prolactinoma and acromegaly diagnoses can be several decades.

  • Periodic screening of patients with prolactinoma for growth hormone excess should be considered and can 
lead to an early diagnosis of acromegaly before the development of complications.