Browse

You are looking at 1 - 10 of 17 items for :

  • Insulin glargine x
Clear All
Open access

Mohammed Faraz Rafey, Arslan Butt, Barry Coffey, Lisa Reddington, Aiden Devitt, David Lappin and Francis M Finucane

Summary

We describe two cases of SGLT2i-induced euglycaemic diabetic ketoacidosis, which took longer than we anticipated to treat despite initiation of our DKA protocol. Both patients had an unequivocal diagnosis of type 2 diabetes, had poor glycaemic control with a history of metformin intolerance and presented with relatively vague symptoms post-operatively. Neither patient had stopped their SGLT2i pre-operatively, but ought to have by current treatment guidelines.

Learning points:

  • SGLT2i-induced EDKA is a more protracted and prolonged metabolic derangement and takes approximately twice as long to treat as hyperglycaemic ketoacidosis.

  • Surgical patients ought to stop SGLT2i medications routinely pre-operatively and only resume them after they have made a full recovery from the operation.

  • While the mechanistic basis for EDKA remains unclear, our observation of marked ketonuria in both patients suggests that impaired ketone excretion may not be the predominant metabolic lesion in every case.

  • Measurement of insulin, C-Peptide, blood and urine ketones as well as glucagon and renal function at the time of initial presentation with EDKA may help to establish why this problem occurs in specific patients.

Open access

Jose León Mengíbar, Ismael Capel, Teresa Bonfill, Isabel Mazarico, Laia Casamitjana Espuña, Assumpta Caixàs and Mercedes Rigla

Summary

Durvalumab, a human immunoglobulin G1 kappa monoclonal antibody that blocks the interaction of programmed cell death ligand 1 (PD-L1) with the PD-1 and CD80 (B7.1) molecules, is increasingly used in advanced neoplasias. Durvalumab use is associated with increased immune-related adverse events. We report a case of a 55-year-old man who presented to our emergency room with hyperglycaemia after receiving durvalumab for urothelial high-grade non-muscle-invasive bladder cancer. On presentation, he had polyuria, polyphagia, nausea and vomiting, and laboratory test revealed diabetic ketoacidosis (DKA). Other than durvalumab, no precipitating factors were identified. Pre-durvalumab blood glucose was normal. The patient responded to treatment with intravenous fluids, insulin and electrolyte replacement. Simultaneously, he presented a thyroid hormone pattern that evolved in 10 weeks from subclinical hyperthyroidism (initially attributed to iodinated contrast used in a previous computerised tomography) to overt hyperthyroidism and then to severe primary hypothyroidism (TSH: 34.40 µU/mL, free thyroxine (FT4): <0.23 ng/dL and free tri-iodothyronine (FT3): 0.57 pg/mL). Replacement therapy with levothyroxine was initiated. Finally, he was tested positive for anti-glutamic acid decarboxylase (GAD65), anti-thyroglobulin (Tg) and antithyroid peroxidase (TPO) antibodies (Abs) and diagnosed with type 1 diabetes mellitus (DM) and silent thyroiditis caused by durvalumab. When durvalumab was stopped, he maintained the treatment of multiple daily insulin doses and levothyroxine. Clinicians need to be alerted about the development of endocrinopathies, such as DM, DKA and primary hypothyroidism in the patients receiving durvalumab.

Learning points:

  • Patients treated with anti-PD-L1 should be screened for the most common immune-related adverse events (irAEs).

  • Glucose levels and thyroid function should be monitored before and during the treatment.

  • Durvalumab is mainly associated with thyroid and endocrine pancreas dysfunction.

  • In the patients with significant autoimmune background, risk–benefit balance of antineoplastic immunotherapy should be accurately assessed.

Open access

Michelle Maher, Mohammed Faraz Rafey, Helena Griffin, Katie Cunningham and Francis M Finucane

Summary

A 45-year-old man with poorly controlled type 2 diabetes (T2DM) (HbA1c 87 mmol/mol) despite 100 units of insulin per day and severe obesity (BMI 40.2 kg/m2) was referred for bariatric intervention. He declined bariatric surgery or GLP1 agonist therapy. Initially, his glycaemic control improved with dietary modification and better adherence to insulin therapy, but he gained weight. We started a low-energy liquid diet, with 2.2 L of semi-skimmed milk (equivalent to 1012 kcal) per day for 8 weeks (along with micronutrient, salt and fibre supplementation) followed by 16 weeks of phased reintroduction of a normal diet. His insulin was stopped within a week of starting this programme, and over 6 months, he lost 20.6 kg and his HbA1c normalised. However, 1 year later, despite further weight loss, his HbA1c deteriorated dramatically, requiring introduction of linagliptin and canagliflozin, with good response. Five years after initial presentation, his BMI remains elevated but improved at 35.5 kg/m2 and his glycaemic control is excellent with a HbA1c of 50 mmol/mol and he is off insulin therapy. Whether semi-skimmed milk is a safe, effective substrate for carefully selected patients with severe obesity complicated by T2DM remains to be determined. Such patients would need frequent monitoring by an experienced multidisciplinary team.

Learning points:

  • Meal replacement programmes are an emerging therapeutic strategy to allow severely obese type 2 diabetes patients to achieve clinically impactful weight loss.

  • Using semi-skimmed milk as a meal replacement substrate might be less costly than commercially available programmes, but is likely to require intensive multidisciplinary bariatric clinical follow-up.

  • For severely obese adults with poor diabetes control who decline bariatric surgery or GLP1 agonist therapy, a milk-based meal replacement programme may be an option.

  • Milk-based meal replacement in patients with insulin requiring type 2 diabetes causes rapid and profound reductions in insulin requirements, so rigorous monitoring of glucose levels by patients and their clinicians is necessary.

  • In carefully selected and adequately monitored patients, the response to oral antidiabetic medications may help to differentiate between absolute and relative insulin deficiency.

Open access

Ming Li Yee, Rosemary Wong, Mineesh Datta, Timothy Nicholas Fazio, Mina Mohammad Ebrahim, Elissa Claire Mcnamara, Gerard De Jong and Christopher Gilfillan

Summary

Mitochondrial diseases are rare, heterogeneous conditions affecting organs dependent on high aerobic metabolism. Presenting symptoms and signs vary depending on the mutation and mutant protein load. Diabetes mellitus is the most common endocrinopathy, and recognition of these patients is important due to its impact on management and screening of family members. In particular, glycemic management differs in these patients: the use of metformin is avoided because of the risk of lactic acidosis. We describe a patient who presented with gradual weight loss and an acute presentation of hyperglycemia complicated by the superior mesenteric artery syndrome. His maternal history of diabetes and deafness and a personal history of hearing impairment led to the diagnosis of a mitochondrial disorder.

Learning points:

  • The constellation of diabetes, multi-organ involvement and maternal inheritance should prompt consideration of a mitochondrial disorder.

  • Mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes (MELAS) and maternally inherited diabetes and deafness (MIDD) are the most common mitochondrial diabetes disorders caused by a mutation in m.3243A>G in 80% of cases.

  • Metformin should be avoided due to the risk of lactic acidosis.

  • There is more rapid progression to insulin therapy and higher prevalence of diabetic complications compared to type 2 diabetes.

  • Diagnosis of a mitochondrial disorder leads to family screening, education and surveillance for future complications.

  • Superior mesenteric artery syndrome, an uncommon but important cause of intestinal pseudo-obstruction in cases of significant weight loss, has been reported in MELAS patients.

Open access

Clarissa Ern Hui Fang, Mohammed Faraz Rafey, Aine Cunningham, Sean F Dinneen and Francis M Finucane

Summary

A 28-year-old male presented with 2 days of vomiting and abdominal pain, preceded by 2 weeks of thirst, polyuria and polydipsia. He had recently started risperidone for obsessive-compulsive disorder. He reported a high dietary sugar intake and had a strong family history of type 2 diabetes mellitus (T2DM). On admission, he was tachycardic, tachypnoeic and drowsy with a Glasgow Coma Scale (GCS) of 10/15. We noted axillary acanthosis nigricans and obesity (BMI 33.2 kg/m2). Dipstick urinalysis showed ketonuria and glycosuria. Blood results were consistent with diabetic ketoacidosis (DKA), with hyperosmolar state. We initiated our DKA protocol, with intravenous insulin, fluids and potassium, and we discontinued risperidone. His obesity, family history of T2DM, acanthosis nigricans and hyperosmolar state prompted consideration of T2DM presenting with ‘ketosis-prone diabetes’ (KPD) rather than T1DM. Antibody markers of beta-cell autoimmunity were subsequently negative. Four weeks later, he had modified his diet and lost weight, and his metabolic parameters had normalised. We reduced his total daily insulin dose from 35 to 18 units and introduced metformin. We stopped insulin completely by week 7. At 6 months, his glucometer readings and glycated haemoglobin (HbA1c) level had normalised.

Learning points:

  • Risperidone-induced diabetic ketoacidosis (DKA) is not synonymous with type 1 diabetes, even in young white patients and may be a manifestation of ‘ketosis-prone’ type 2 diabetes (KPD).

  • KPD is often only confirmed after the initial presentation, when islet autoimmunity and cautious phasing out of insulin therapy have been assessed, and emergency DKA management remains the same.

  • As in other cases of KPD, a family history of T2DM and presence of cutaneous markers of insulin resistance were important clinical features suggestive of an alternative aetiology for DKA.

Open access

Ali A Zaied, Halis K Akturk, Richard W Joseph and Augustine S Lee

Summary

Nivolumab, a monoclonal antibody against programmed cell death-1 receptor, is increasingly used in advanced cancers. While nivolumab use enhances cancer therapy, it is associated with increased immune-related adverse events. We describe an elderly man who presented in ketoacidosis after receiving nivolumab for metastatic renal cell carcinoma. On presentation, he was hyperpneic and laboratory analyses showed hyperglycemia and anion-gapped metabolic acidosis consistent with diabetic ketoacidosis. No other precipitating factors, besides nivolumab, were identified. Pre-nivolumab blood glucose levels were normal. The patient responded to treatment with intravenous fluids, insulin and electrolyte replacement. He was diagnosed with insulin-dependent autoimmune diabetes mellitus secondary to nivolumab. Although nivolumab was stopped, he continued to require multiple insulin injection therapy till his last follow-up 7 months after presentation. Clinicians need to be alerted to the development of diabetes mellitus and diabetic ketoacidosis in patients receiving nivolumab.

Learning points:

  • Diabetic ketoacidosis should be considered in the differential of patients presenting with metabolic acidosis following treatment with antibodies to programmed cell death-1 receptor (anti-PD-1).

  • Autoimmune islet cell damage is the presumed mechanism for how insulin requiring diabetes mellitus can develop de novo following administration of anti-PD-1.

  • Because anti-PD-1 works by the activation of T-cells and reduction of ‘self-tolerance’, other autoimmune disorders are likely to be increasingly recognized with increased use of these agents.

Open access

Ploutarchos Tzoulis, Richard W Corbett, Swarupini Ponnampalam, Elly Baker, Daniel Heaton, Triada Doulgeraki and Justin Stebbing

Summary

Five days following the 3rd cycle of nivolumab, a monoclonal antibody, which acts as immune checkpoint inhibitor against the programmed cell death protein-1, for metastatic lung adenocarcinoma, a 56-year-old woman presented at the hospital critically ill. On admission, she had severe diabetic ketoacidosis (DKA), as evidenced by venous glucose of 47 mmol/L, blood ketones of 7.5 mmol/L, pH of 6.95 and bicarbonate of 6.6 mmol/L. She has had no personal or family history of diabetes mellitus (DM), while random venous glucose, measured 1 week prior to hospitalisation, was 6.1 mmol/L. On admission, her HbA1c was 8.2% and anti-GAD antibodies were 12 kIU/L (0–5 kU/L), while islet cell antibodies and serum C-peptide were undetectable. Nivolumab was recommenced without the development of other immune-mediated phenomena until 6 months later, when she developed hypothyroidism with TSH 18 U/L and low free T4. She remains insulin dependent and has required levothyroxine replacement, while she has maintained good radiological and clinical response to immunotherapy. This case is notable for the rapidity of onset and profound nature of DKA at presentation, which occurred two months following commencement of immunotherapy. Despite the association of nivolumab with immune-mediated endocrinopathies, only a very small number of patients developing type 1 DM has been reported to date. Patients should be closely monitored for hyperglycaemia and thyroid dysfunction prior to and periodically during immunotherapy.

Learning points:

  • Nivolumab can induce fulminant type 1 diabetes, resulting in DKA.

  • Nivolumab is frequently associated with thyroid dysfunction, mostly hypothyroidism.

  • Nivolumab-treated patients should be monitored regularly for hyperglycaemia and thyroid dysfunction.

  • Clinicians should be aware and warn patients of potential signs and symptoms of severe hyperglycaemia.

Open access

Florence Gunawan, Elizabeth George and Adam Roberts

Summary

Immune checkpoint inhibitors are the mainstay of treatment for advanced melanoma, and their use is being increasingly implicated in the development of autoimmune endocrinopathies. We present a case of a 52-year-old man with metastatic melanoma on combination nivolumab and ipilumimab therapy who developed concurrent hypophysitis, type 1 diabetes mellitus (T1DM) and diabetes insipidus. He presented prior to third cycle of combination treatment with a headache, myalgias and fatigue. Biochemistry and MRI pituitary confirmed anterior pituitary dysfunction with a TSH: 0.02 mU/L (0.5–5.5 mU/L), fT4: 5.2 pmol/L (11–22 pmol/L), fT3: 4.0 pmol/L (3.2–6.4 pmol/L), cortisol (12:00 h): <9 nmol/L (74–286 nmol/L), FSH: 0.7 IU/L (1.5–9.7 IU/L), LH: <0.1 IU/L (1.8–9.2 IU/L), PRL: 1 mIU/L (90–400 mIU/L), SHBG: 34 nmol/L (19–764 nmol/L) and total testosterone: <0.4 nmol/L (9.9–27.8 nmol/L). High-dose dexamethasone (8 mg) was administered followed by hydrocortisone, thyroxine and topical testosterone replacement. Two weeks post administration of the third cycle, he became unwell with lethargy, weight loss and nocturia. Central diabetes insipidus was diagnosed on the basis of symptoms and sodium of 149 mmol/L (135–145 mmol/L). Desmopressin nasal spray was instituted with symptom resolution and normalization of serum sodium. Three weeks later, he presented again polyuric and polydipsic. His capillary glucose was 20.8 mmol/L (ketones of 2.4 mmol), low C-peptide 0.05 nmol/L (0.4–1.5 nmol/L) and HbA1c of 7.7%. T1DM was suspected, and he was commenced on an insulin infusion with rapid symptom resolution. Insulin antibodies glutamic acid decarboxylase (GAD), insulin antibody-2 (IA-2) and zinc transporter-8 (ZnT8) were negative. A follow-up MRI pituitary revealed findings consistent with recovering autoimmune hypophysitis. Immunotherapy was discontinued based on the extent of these autoimmune endocrinopathies.

Learning points:

  • The most effective regime for treatment of metastatic melanoma is combination immunotherapy with nivolumab and ipilumimab, and this therapy is associated with a high incidence of autoimmune endocrinopathies.

  • Given the high prevalence of immune-related adverse events, the threshold for functional testing should be low.

  • Traditional antibody testing may not be reliable to identify early-onset endocrinopathy.

  • Routine screening pathways have yet to be adequately validated through clinical trials.

Open access

Ken Takeshima, Hiroyuki Ariyasu, Tatsuya Ishibashi, Shintaro Kawai, Shinsuke Uraki, Jinsoo Koh, Hidefumi Ito and Takashi Akamizu

Summary

Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystem disease affecting muscles, the eyes and the endocrine organs. Diabetes mellitus and primary hypogonadism are endocrine manifestations typically seen in patients with DM1. Abnormalities of hypothalamic–pituitary–adrenal (HPA) axis have also been reported in some DM1 patients. We present a case of DM1 with a rare combination of multiple endocrinopathies; diabetes mellitus, a combined form of primary and secondary hypogonadism, and dysfunction of the HPA axis. In the present case, diabetes mellitus was characterized by severe insulin resistance with hyperinsulinemia. Glycemic control improved after modification of insulin sensitizers, such as metformin and pioglitazone. Hypogonadism was treated with testosterone replacement therapy. Notably, body composition analysis revealed increase in muscle mass and decrease in fat mass in our patient. This implies that manifestations of hypogonadism could be hidden by symptoms of myotonic dystrophy. Our patient had no symptoms associated with adrenal deficiency, so adrenal dysfunction was carefully followed up without hydrocortisone replacement therapy. In this report, we highlight the necessity for evaluation and treatment of multiple endocrinopathies in patients with DM1.

Learning points:

  • DM1 patients could be affected by a variety of multiple endocrinopathies.

  • Our patients with DM1 presented rare combinations of multiple endocrinopathies; diabetes mellitus, combined form of primary and secondary hypogonadism and dysfunction of HPA axis.

  • Testosterone treatment of hypogonadism in patients with DM1 could improve body composition.

  • The patients with DM1 should be assessed endocrine functions and treated depending on the degree of each endocrine dysfunction.

Open access

Joseph Cerasuolo and Anthony Izzo

Summary

Acute hyperglycemia has been shown to cause cognitive impairments in animal models. There is growing appreciation of the numerous effects of hyperglycemia on neuronal function as well as blood–brain barrier function. In humans, hypoglycemia is well known to cause cognitive deficits acutely, but hyperglycemia has been less well studied. We present a case of selective neurocognitive deficits in the setting of acute hyperglycemia. A 60-year-old man was admitted to the hospital for an episode of acute hyperglycemia in the setting of newly diagnosed diabetes mellitus precipitated by steroid use. He was managed with insulin therapy and discharged home, and later, presented with complaints of memory impairment. Deficits included impairment in his declarative and working memory, to the point of significant impairment in his overall functioning. The patient had no structural lesions on MRI imaging of the brain or other systemic illnesses to explain his specific deficits. We suggest that his acute hyperglycemia may have caused neurological injury, and may be responsible for our patient’s memory complaints.

Learning points:

  • Acute hyperglycemia has been associated with poor outcomes in several different central nervous system injuries including cerebrovascular accident and hypoxic injury.

  • Hyperglycemia is responsible for accumulation of reactive oxygen species in the brain, resulting in advanced glycosylated end products and a proinflammatory response that may lead to cellular injury.

  • Further research is needed to define the impact of both acute and chronic hyperglycemia on cognitive impairment and memory.