Clinical Overview > Condition/ Syndrome
Search for other papers by Yang Timothy Du in
Google Scholar
PubMed
SA Pathology, Women’s and Children’s Hospital
Search for other papers by Lynette Moore in
Google Scholar
PubMed
Search for other papers by Nicola K Poplawski in
Google Scholar
PubMed
School of Medicine, University of Adelaide
Adult Genetics Unit, Royal Adelaide Hospital
Center for Cancer Biology, SA Pathology and University of South Australia Alliance, Adelaide, South Australia, Australia
Search for other papers by Sunita M C De Sousa in
Google Scholar
PubMed
Summary
A 26-year-old man presented with a combination of permanent neonatal diabetes due to pancreatic aplasia, complex congenital heart disease, central hypogonadism and growth hormone deficiency, structural renal abnormalities with proteinuria, umbilical hernia, neurocognitive impairment and dysmorphic features. His older brother had diabetes mellitus due to pancreatic hypoplasia, complex congenital heart disease, hypospadias and umbilical hernia. Their father had an atrial septal defect, umbilical hernia and diabetes mellitus diagnosed incidentally in adulthood on employment screening. The proband’s paternal grandmother had a congenital heart defect. Genetic testing of the proband revealed a novel heterozygous missense variant (Chr18:g.19761441T>C, c.1330T>C, p.Cys444Arg) in exon 4 of GATA6, which is class 5 (pathogenic) using American College of Medical Genetics and Genomics guidelines and is likely to account for his multisystem disorder. The same variant was detected in his brother and father, but not his paternal grandmother. This novel variant of GATA6 likely occurred de novo in the father with autosomal dominant inheritance in the proband and his brother. The case is exceptional as very few families with monogenic diabetes due to GATA6 mutations have been reported to date and we describe a new link between GATA6 and renal pathology.
Learning points:
-
Monogenic diabetes should be suspected in patients presenting with syndromic features, multisystem congenital disease, neonatal-onset diabetes and/or a suggestive family history.
-
Recognition and identification of genetic diabetes may improve patient understanding and empowerment and allow for better tailored management.
-
Identification of a genetic disorder may have important implications for family planning.
Search for other papers by Dominic Cavlan in
Google Scholar
PubMed
Search for other papers by Shanti Vijayaraghavan in
Google Scholar
PubMed
Search for other papers by Susan Gelding in
Google Scholar
PubMed
Search for other papers by William Drake in
Google Scholar
PubMed
Summary
A state of insulin resistance is common to the clinical conditions of both chronic growth hormone (GH) deficiency and GH excess (acromegaly). GH has a physiological role in glucose metabolism in the acute settings of fast and exercise and is the only anabolic hormone secreted in the fasting state. We report the case of a patient in whom knowledge of this aspect of GH physiology was vital to her care. A woman with well-controlled type 1 diabetes mellitus who developed hypopituitarism following the birth of her first child required GH replacement therapy. Hours after the first dose, she developed a rapid metabolic deterioration and awoke with hyperglycaemia and ketonuria. She adjusted her insulin dose accordingly, but the pattern was repeated with each subsequent increase in her dose. Acute GH-induced lipolysis results in an abundance of free fatty acids (FFA); these directly inhibit glucose uptake into muscle, and this can lead to hyperglycaemia. This glucose–fatty acid cycle was first described by Randle et al. in 1963; it is a nutrient-mediated fine control that allows oxidative muscle to switch between glucose and fatty acids as fuel, depending on their availability. We describe the mechanism in detail.
Learning points
-
There is a complex interplay between GH and insulin resistance: chronically, both GH excess and deficiency lead to insulin resistance, but there is also an acute mechanism that is less well appreciated by clinicians.
-
GH activates hormone-sensitive lipase to release FFA into the circulation; these may inhibit the uptake of glucose leading to hyperglycaemia and ketosis in the type 1 diabetic patient.
-
The Randle cycle, or glucose–fatty acid cycle, outlines the mechanism for this acute relationship.
-
Monitoring the adequacy of GH replacement in patients with type 1 diabetes is difficult, with IGF1 an unreliable marker.