Clinical Overview > Condition/ Syndrome

You are looking at 1 - 4 of 4 items for :

  • Hypoparathyroidism x
Clear All
Umberto Spennato Medical University Clinic, Division of Endocrinology, Diabetes, and Metabolism, Cantonal Hospital Aarau, Switzerland

Search for other papers by Umberto Spennato in
Google Scholar
PubMed
Close
,
Jennifer Siegwart Medical University Clinic, Division of Endocrinology, Diabetes, and Metabolism, Cantonal Hospital Aarau, Switzerland

Search for other papers by Jennifer Siegwart in
Google Scholar
PubMed
Close
,
Britta Hartmann Institute for Laboratory Medicine, Division Medical Genetics, Cantonal Hospital Aarau, Switzerland

Search for other papers by Britta Hartmann in
Google Scholar
PubMed
Close
,
Elisabeth Julia Fischer Institute for Laboratory Medicine, Division Medical Genetics, Cantonal Hospital Aarau, Switzerland

Search for other papers by Elisabeth Julia Fischer in
Google Scholar
PubMed
Close
,
Cecilia Bracco Institute for Laboratory Medicine, Division Medical Genetics, Cantonal Hospital Aarau, Switzerland

Search for other papers by Cecilia Bracco in
Google Scholar
PubMed
Close
,
Joel Capraro Medical University Clinic, Division of Endocrinology, Diabetes, and Metabolism, Cantonal Hospital Aarau, Switzerland

Search for other papers by Joel Capraro in
Google Scholar
PubMed
Close
,
Beat Mueller Medical University Clinic, Division of Endocrinology, Diabetes, and Metabolism, Cantonal Hospital Aarau, Switzerland
Medical Faculty of the University of Basel, Switzerland

Search for other papers by Beat Mueller in
Google Scholar
PubMed
Close
,
Philipp Schuetz Medical University Clinic, Division of Endocrinology, Diabetes, and Metabolism, Cantonal Hospital Aarau, Switzerland
Medical Faculty of the University of Basel, Switzerland

Search for other papers by Philipp Schuetz in
Google Scholar
PubMed
Close
,
Andreas Werner Jehle Department of Internal Medicine, Hirslanden Klinik St. Anna, Lucerne, Switzerland
Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland

Search for other papers by Andreas Werner Jehle in
Google Scholar
PubMed
Close
, and
Tristan Struja Medical University Clinic, Division of Endocrinology, Diabetes, and Metabolism, Cantonal Hospital Aarau, Switzerland
Medical Faculty of the University of Basel, Switzerland

Search for other papers by Tristan Struja in
Google Scholar
PubMed
Close

Summary

Barakat syndrome, also called HDR syndrome, is a rare genetic disorder encompassing hypoparathyroidism (H), sensorineural deafness (D) and renal disease (R). A 64-year-old woman was referred to our endocrinology clinic for a switch in treatment (from dihydrotachysterol to calcitriol). She had progressive sensorineural deafness since the age of 18 and idiopathic hypoparathyroidism diagnosed at age of 36. Her medical history included osteoporosis with hip/spine fractures, nephrolithiasis and a family history of hearing loss, osteoporosis and kidney disease. The patient’s clinical presentation indicated Barakat syndrome. Genetic analysis found a GATA3:c.916C>T nonsense variant. Further tests such as audiometry, labs and renal imaging supported the diagnosis. Due to rarity and manifold symptoms, diagnosis can be challenging. Optional GATA3 testing was suggested in 2018, except in cases of isolated sensorineural deafness or renal disease with pertinent family history. In isolated ‘H’ cases without ‘D’ and ‘R’, GATA3 studies are not required, as no haploinsufficiency cases were reported. Given the rise in genetic disorders, physicians should consistently consider rare genetic disorders in patients with suggestive symptoms, even decades after onset. Although diagnosis might not always impact management directly, it aids patients in accepting their condition and has broader family implications.

Learning points

  • There is currently an important increase in genetic and clinical characterization of new orphan diseases and their causative agents.

  • Unbiased re-evaluation for possible genetic disorders is necessary at every consultation.

  • It is essential to recognize the differential diagnosis of idiopathic hypoparathyroidism.

  • The patient’s clinical presentation and family history can be important to establish the correct diagnosis.

  • Physicians should not hesitate to search a patient’s signs and symptoms online.

Open access
Carmina Teresa Fuss Division of Endocrinology and Diabetology, Department of Medicine I, University Hospital Würzburg, Würzburg, Germany

Search for other papers by Carmina Teresa Fuss in
Google Scholar
PubMed
Close
,
Stephanie Burger-Stritt Division of Endocrinology and Diabetology, Department of Medicine I, University Hospital Würzburg, Würzburg, Germany

Search for other papers by Stephanie Burger-Stritt in
Google Scholar
PubMed
Close
,
Silke Horn Division of Endocrinology and Diabetology, Department of Medicine I, University Hospital Würzburg, Würzburg, Germany

Search for other papers by Silke Horn in
Google Scholar
PubMed
Close
,
Ann-Cathrin Koschker Division of Endocrinology and Diabetology, Department of Medicine I, University Hospital Würzburg, Würzburg, Germany

Search for other papers by Ann-Cathrin Koschker in
Google Scholar
PubMed
Close
,
Kathrin Frey Division of Endocrinology and Diabetology, Department of Medicine I, University Hospital Würzburg, Würzburg, Germany

Search for other papers by Kathrin Frey in
Google Scholar
PubMed
Close
,
Almuth Meyer Division of Endocrinology and Diabetology, Department of Internal Medicine, Helios Klinikum Erfurt, Erfurt, Germany

Search for other papers by Almuth Meyer in
Google Scholar
PubMed
Close
, and
Stefanie Hahner Division of Endocrinology and Diabetology, Department of Medicine I, University Hospital Würzburg, Würzburg, Germany

Search for other papers by Stefanie Hahner in
Google Scholar
PubMed
Close

Summary

Standard treatment of hypoparathyroidism consists of supplementation of calcium and vitamin D analogues, which does not fully restore calcium homeostasis. In some patients, hypoparathyroidism is refractory to standard treatment with persistent low serum calcium levels and associated clinical complications. Here, we report on three patients (58-year-old male, 52-year-old female, and 48-year-old female) suffering from severe treatment-refractory postsurgical hypoparathyroidism. Two patients had persistent hypocalcemia despite oral treatment with up to 4 µg calcitriol and up to 4 g calcium per day necessitating additional i.v. administration of calcium gluconate 2–3 times per week, whereas the third patient presented with high frequencies of hypocalcemic and treatment-associated hypercalcemic episodes. S.c. administration of rhPTH (1–34) twice daily (40 µg/day) or rhPTH (1–84) (100 µg/day) only temporarily increased serum calcium levels but did not lead to long-term stabilization. In all three cases, treatment with rhPTH (1–34) as continuous s.c. infusion via insulin pump was initiated. Normalization of serum calcium and serum phosphate levels was observed within 1 week at daily 1–34 parathyroid hormone doses of 15 µg to 29.4 µg. Oral vitamin D and calcium treatment could be stopped or reduced and regular i.v. calcium administration was no more necessary. Ongoing efficacy of this treatment has been documented for up to 7 years so far. Therefore, we conclude that hypoparathyroidism that is refractory to both conventional treatment and s.c. parathyroid hormone (single or twice daily) may be successfully treated with continuous parathyroid hormone administration via insulin pump.

Learning points:

  • Standard treatment of hypoparathyroidism still consists of administration of calcium and active vitamin D.

  • Very few patients with hypoparathyroidism also do not respond sufficiently to standard treatment or administration of s.c. parathyroid hormone once or twice daily.

  • In those cases, continuous s.c. administration of parathyroid hormone via insulin pump may represent a successful treatment alternative.

Open access
Sara Lomelino-Pinheiro Endocrinology Department, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal

Search for other papers by Sara Lomelino-Pinheiro in
Google Scholar
PubMed
Close
,
Bastos Margarida Endocrinology, Diabetes and Metabolism Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal

Search for other papers by Bastos Margarida in
Google Scholar
PubMed
Close
, and
Adriana de Sousa Lages Endocrinology, Diabetes and Metabolism Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal

Search for other papers by Adriana de Sousa Lages in
Google Scholar
PubMed
Close

Summary

Familial hypomagnesemia with secondary hypocalcemia (FHSH) is a rare autosomal recessive disorder (OMIM# 602014) characterized by profound hypomagnesemia associated with hypocalcemia. It is caused by mutations in the gene encoding transient receptor potential cation channel member 6 (TRPM6). It usually presents with neurological symptoms in the first months of life. We report a case of a neonate presenting with recurrent seizures and severe hypomagnesemia. The genetic testing revealed a novel variant in the TRPM6 gene. The patient has been treated with high-dose magnesium supplementation, remaining asymptomatic and without neurological sequelae until adulthood. Early diagnosis and treatment are important to prevent irreversible neurological damage.

Learning points:

  • Loss-of-function mutations of TRPM6 are associated with FHSH.

  • FHSH should be considered in any child with refractory hypocalcemic seizures, especially in cases with serum magnesium levels as low as 0.2 mM.

  • Normocalcemia and relief of clinical symptoms can be assured by administration of high doses of magnesium.

  • Untreated, the disorder may be fatal or may result in irreversible neurological damage.

Open access
Benjamin Kwan University of Sydney, Sydney, New South Wales, Australia
Department of Endocrinology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia

Search for other papers by Benjamin Kwan in
Google Scholar
PubMed
Close
,
Bernard Champion University of Sydney, Sydney, New South Wales, Australia
Department of Clinical Medicine, Macquarie University, Sydney, New South Wales, Australia

Search for other papers by Bernard Champion in
Google Scholar
PubMed
Close
,
Steven Boyages University of Sydney, Sydney, New South Wales, Australia
Department of Endocrinology, Westmead Hospital, Sydney, New South Wales, Australia

Search for other papers by Steven Boyages in
Google Scholar
PubMed
Close
,
Craig F Munns University of Sydney, Sydney, New South Wales, Australia
The Children’s Hospital at Westmead, Sydney, New South Wales, Australia

Search for other papers by Craig F Munns in
Google Scholar
PubMed
Close
,
Roderick Clifton-Bligh University of Sydney, Sydney, New South Wales, Australia
Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, New South Wales, Australia

Search for other papers by Roderick Clifton-Bligh in
Google Scholar
PubMed
Close
,
Catherine Luxford University of Sydney, Sydney, New South Wales, Australia
Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, New South Wales, Australia

Search for other papers by Catherine Luxford in
Google Scholar
PubMed
Close
, and
Bronwyn Crawford University of Sydney, Sydney, New South Wales, Australia
Department of Endocrinology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia

Search for other papers by Bronwyn Crawford in
Google Scholar
PubMed
Close

Summary

Autosomal dominant hypocalcaemia type 1 (ADH1) is a rare familial disorder characterised by low serum calcium and low or inappropriately normal serum PTH. It is caused by activating CASR mutations, which produces a left-shift in the set point for extracellular calcium. We describe an Australian family with a novel heterozygous missense mutation in CASR causing ADH1. Mild neuromuscular symptoms (paraesthesia, carpopedal spasm) were present in most affected individuals and required treatment with calcium and calcitriol. Basal ganglia calcification was present in three out of four affected family members. This case highlights the importance of correctly identifying genetic causes of hypocalcaemia to allow for proper management and screening of family members.

Learning points:

  • ADH1 is a rare cause of hypoparathyroidism due to activating CASR mutations and is the mirror image of familial hypocalciuric hypercalcaemia.

  • In patients with ADH1, symptoms of hypocalcaemia may be mild or absent. Basal ganglia calcification may be present in over a third of patients.

  • CASR mutation analysis is required for diagnostic confirmation and to facilitate proper management, screening and genetic counselling of affected family members.

  • Treatment with calcium and activated vitamin D analogues should be reserved for symptomatic individuals due to the risk of exacerbating hypercalciuria and its associated complications.

Open access