Clinical Overview > Condition/ Syndrome > Hypergonadotropic hypogonadism

You are looking at 1 - 7 of 7 items

Yotsapon Thewjitcharoen Diabetes and Thyroid Center, Theptarin Hospital, Bangkok, Thailand

Search for other papers by Yotsapon Thewjitcharoen in
Google Scholar
PubMed
Close
,
Veekij Veerasomboonsin Diabetes and Thyroid Center, Theptarin Hospital, Bangkok, Thailand

Search for other papers by Veekij Veerasomboonsin in
Google Scholar
PubMed
Close
,
Soontaree Nakasatien Diabetes and Thyroid Center, Theptarin Hospital, Bangkok, Thailand

Search for other papers by Soontaree Nakasatien in
Google Scholar
PubMed
Close
,
Sirinate Krittiyawong Diabetes and Thyroid Center, Theptarin Hospital, Bangkok, Thailand

Search for other papers by Sirinate Krittiyawong in
Google Scholar
PubMed
Close
, and
Thep Himathongkam Diabetes and Thyroid Center, Theptarin Hospital, Bangkok, Thailand

Search for other papers by Thep Himathongkam in
Google Scholar
PubMed
Close

Summary

Primary amenorrhea could be caused by disorders of four parts: disorders of the outflow tract, disorders of the ovary, disorders of the anterior pituitary, and disorders of hypothalamus. Delay in diagnosis and hormone substitution therapy causes secondary osteoporosis. Herein, we report a case of a 23-year-old phenotypical female who presented with primary amenorrhea from 46, XX gonadal dysgenesis but had been misdiagnosed as Mayer–Rokitansky–Kuster–Hauser (MRKH) syndrome or Mullerian agenesis. The coexistence of gonadal dysgenesis and MRKH was suspected after laboratory and imaging investigations. However, the vanishing uterus reappeared after 18 months of hormone replacement therapy. Therefore, hormone profiles and karyotype should be thoroughly investigated to distinguish MRKH syndrome from other disorders of sex development (DSD). Double diagnosis of DSD is extremely rare and periodic evaluation should be reassessed. This case highlights the presence of estrogen deficiency state, the uterus may remain invisible until adequate exposure to exogenous estrogen.

Learning points:

  • An early diagnosis of disorders of sex development (DSD) is extremely important in order to promptly begin treatment, provide emotional support to the patient and reduce the risks of associated complications.

  • Hormone profiles and karyotype should be investigated in all cases of the presumptive diagnosis of Mayer–Rokitansky–Kuster–Hauser (MRKH) syndrome or Mullerian agenesis.

  • The association between 46, XX gonadal dysgenesis and Mullerian agenesis has been occasionally reported as a co-incidental event; however, reassessment of the presence of uterus should be done again after administration of exogenous estrogen replacement for at least 6–12 months.

  • A multidisciplinary approach is necessary for patients presenting with DSD to ensure appropriate treatments and follow-up across the lifespan of individuals with DSD.

Open access
Isabella Lupi Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

Search for other papers by Isabella Lupi in
Google Scholar
PubMed
Close
,
Alessandro Brancatella Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

Search for other papers by Alessandro Brancatella in
Google Scholar
PubMed
Close
,
Mirco Cosottini Neuroradiology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy

Search for other papers by Mirco Cosottini in
Google Scholar
PubMed
Close
,
Nicola Viola Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

Search for other papers by Nicola Viola in
Google Scholar
PubMed
Close
,
Giulia Lanzolla Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

Search for other papers by Giulia Lanzolla in
Google Scholar
PubMed
Close
,
Daniele Sgrò Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

Search for other papers by Daniele Sgrò in
Google Scholar
PubMed
Close
,
Giulia Di Dalmazi Section of Endocrinology, Department of Medicine and Aging Sciences, Ce.S.I-Me.T., “G.D’Annunzio” University of Chieti-Pescara, Chieti, Italy

Search for other papers by Giulia Di Dalmazi in
Google Scholar
PubMed
Close
,
Francesco Latrofa Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

Search for other papers by Francesco Latrofa in
Google Scholar
PubMed
Close
,
Patrizio Caturegli Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore Maryland, USA

Search for other papers by Patrizio Caturegli in
Google Scholar
PubMed
Close
, and
Claudio Marcocci Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

Search for other papers by Claudio Marcocci in
Google Scholar
PubMed
Close

Summary

Programmed cell death protein 1/programmed cell death protein ligand 1 (PD-1/PD-L1) and cytotoxic T-lymphocyte antigen 4/B7 (CTLA-4/B7) pathways are key regulators in T-cell activation and tolerance. Nivolumab, pembrolizumab (PD-1 inhibitors), atezolizumab (PD-L1 inhibitor) and ipilimumab (CTLA-4 inhibitor) are monoclonal antibodies approved for treatment of several advanced cancers. Immune checkpoint inhibitors (ICIs)-related hypophysitis is described more frequently in patients treated with anti-CTLA-4; however, recent studies reported an increasing prevalence of anti-PD-1/PD-L1-induced hypophysitis which also exhibits slightly different clinical features. We report our experience on hypophysitis induced by anti-PD-1/anti-PD-L1 treatment. We present four cases, diagnosed in the past 12 months, of hypophysitis occurring in two patients receiving anti-PD-1, in one patient receiving anti-PD-1 and anti-CTLA-4 combined therapy and in one patient receiving anti-PD-L1. In this case series, timing, clinical presentation and association with other immune-related adverse events appeared to be extremely variable; central hypoadrenalism and hyponatremia were constantly detected although sellar magnetic resonance imaging did not reveal specific signs of pituitary inflammation. These differences highlight the complexity of ICI-related hypophysitis and the existence of different mechanisms of action leading to heterogeneity of clinical presentation in patients receiving immunotherapy.

Learning points:

  • PD-1/PD-L1 blockade can induce hypophysitis with a different clinical presentation when compared to CTLA-4 blockade.

  • Diagnosis of PD-1/PD-L1 induced hypophysitis is mainly made on clinical grounds and sellar MRI does not show radiological abnormalities.

  • Hyponatremia due to acute secondary adrenal insufficiency is often the principal sign of PD-1/PD-L1-induced hypophysitis and can be masked by other symptoms due to oncologic disease.

  • PD-1/PD-L1-induced hypophysitis can present as an isolated manifestation of irAEs or be in association with other autoimmune diseases

Open access
M A Shehab Department of Endocrinology, BSMMU, Dhaka, Bangladesh

Search for other papers by M A Shehab in
Google Scholar
PubMed
Close
,
Tahseen Mahmood Department of Endocrinology, BSMMU, Dhaka, Bangladesh

Search for other papers by Tahseen Mahmood in
Google Scholar
PubMed
Close
,
M A Hasanat Department of Endocrinology, BSMMU, Dhaka, Bangladesh

Search for other papers by M A Hasanat in
Google Scholar
PubMed
Close
,
Md Fariduddin Department of Endocrinology, BSMMU, Dhaka, Bangladesh

Search for other papers by Md Fariduddin in
Google Scholar
PubMed
Close
,
Nazmul Ahsan Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh

Search for other papers by Nazmul Ahsan in
Google Scholar
PubMed
Close
,
Mohammad Shahnoor Hossain Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh

Search for other papers by Mohammad Shahnoor Hossain in
Google Scholar
PubMed
Close
,
Md Shahdat Hossain Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh

Search for other papers by Md Shahdat Hossain in
Google Scholar
PubMed
Close
, and
Sharmin Jahan Department of Endocrinology, BSMMU, Dhaka, Bangladesh

Search for other papers by Sharmin Jahan in
Google Scholar
PubMed
Close

Summary

Congenital adrenal hyperplasia (CAH) due to the three-beta-hydroxysteroid-dehydrogenase (3β-HSD) enzyme deficiency is a rare autosomal recessive disorder presenting with sexual precocity in a phenotypic male. Klinefelter syndrome (KS) is the most common sex chromosome aneuploidy presenting with hypergonadotropic hypogonadism in a male. However, only a handful of cases of mosaic KS have been described in the literature. The co-existence of mosaic KS with CAH due to 3β-HSD enzyme deficiency portrays a unique diagnostic paradox where features of gonadal androgen deficiency are masked by simultaneous adrenal androgen excess. Here, we report a 7-year-old phenotypic male boy who, at birth presented with ambiguous genitalia, probably a microphallus with penoscrotal hypospadias. Later on, he developed accelerated growth with advanced bone age, premature pubarche, phallic enlargement and hyperpigmentation. Biochemically, the patient was proven to have CAH due to 3β-HSD deficiency. However, the co-existence of bilateral cryptorchidism made us to consider the possibility of hypogonadism as well, and it was further explained by concurrent existence of mosaic KS (47,XXY/46,XX). He was started on glucocorticoid and mineralocorticoid replacement and underwent right-sided orchidopexy on a later date. He showed significant clinical and biochemical improvement on subsequent follow-up. However, the declining value of serum testosterone was accompanied by rising level of FSH thereby unmasking hypergonadotropic hypogonadism due to mosaic KS. In future, we are planning to place him on androgen replacement as well.

Learning points:

  • Ambiguous genitalia with subsequent development of sexual precocity in a phenotypic male points towards some unusual varieties of CAH.

  • High level of serum testosterone, adrenal androgen, plasma ACTH and low basal cortisol are proof of CAH, whereas elevated level of 17-OH pregnenolone is biochemical marker of 3β-HSD enzyme deficiency.

  • Final diagnosis can be obtained with sequencing of HSD3B2 gene showing various mutations.

  • Presence of bilateral cryptorchidism in such a patient may be due to underlying hypogonadism.

  • Karyotyping in such patient may rarely show mosaic KS (47,XXY/46,XX) and there might be unmasking of hypergonadotropic hypogonadism resulting from adrenal androgen suppression from glucocorticoid treatment.

Open access
Yang Timothy Du Department of Diabetes and Endocrinology, Flinders Medical Centre, Bedford Park, South Australia, Australia

Search for other papers by Yang Timothy Du in
Google Scholar
PubMed
Close
,
Angus Rutter School of Medicine, Flinders University, Bedford Park, South Australia, Australia

Search for other papers by Angus Rutter in
Google Scholar
PubMed
Close
, and
Jui T Ho Department of Diabetes and Endocrinology, Flinders Medical Centre, Bedford Park, South Australia, Australia

Search for other papers by Jui T Ho in
Google Scholar
PubMed
Close

Summary

A 40-year-old man with achondroplasia presented with symptoms of hypogonadism, low libido and gynaecomastia. He was found to have hypergonadotropic hypogonadism, and karyotype and fluorescent in situ hybridisation analysis showed SRY-positive 46, XX disorder of sex development (DSD). He was tested to have the common activating mutation of the FGFR3 gene implicated in achondroplasia, indicating that he had the two rare conditions independently, with an extremely low incidence of 1 in 400 million. This, to the best of our knowledge, is the first report of an individual having these two rare conditions concurrently. This case highlights that individuals with achondroplasia should have normal sexual development, and in those presenting with incomplete sexual maturation or symptoms of hypogonadism should prompt further evaluation. We also propose a plausible link between achondroplasia and 46, XX DSD through the intricate interactions between the SRY, SOX9 and FGFR9 gene pathways.

Learning points:

  • The SOX9 and FGF9 genes, which are upregulated by the SRY gene, are important in both sex determination in the embryo, as well as endochondral bone growth.

  • Patients with achondroplasia should have normal sexual development and function in the absence of other confounding factors.

  • Patients with achondroplasia who present with symptoms and signs of abnormal sexual development and/or hypogonadism should be appropriately investigated for other causes.

Open access
Athanasios Fountas Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Departments of Endocrinology and Radiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Search for other papers by Athanasios Fountas in
Google Scholar
PubMed
Close
,
Shu Teng Chai Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Departments of Endocrinology and Radiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Search for other papers by Shu Teng Chai in
Google Scholar
PubMed
Close
,
John Ayuk Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Departments of Endocrinology and Radiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Search for other papers by John Ayuk in
Google Scholar
PubMed
Close
,
Neil Gittoes Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Departments of Endocrinology and Radiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Search for other papers by Neil Gittoes in
Google Scholar
PubMed
Close
,
Swarupsinh Chavda Departments of Radiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Search for other papers by Swarupsinh Chavda in
Google Scholar
PubMed
Close
, and
Niki Karavitaki Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Departments of Endocrinology and Radiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Search for other papers by Niki Karavitaki in
Google Scholar
PubMed
Close

Summary

Co-existence of craniopharyngioma and acromegaly has been very rarely reported. A 65-year-old man presented with visual deterioration, fatigue and frontal headaches. Magnetic resonance imaging revealed a suprasellar heterogeneous, mainly cystic, 1.9 × 2 × 1.9 cm mass compressing the optic chiasm and expanding to the third ventricle; the findings were consistent with a craniopharyngioma. Pituitary hormone profile showed hypogonadotropic hypogonadism, mildly elevated prolactin, increased insulin-like growth factor 1 (IGF-1) and normal thyroid function and cortisol reserve. The patient had transsphenoidal surgery and pathology of the specimen was diagnostic of adamantinomatous craniopharyngioma. Post-operatively, he had diabetes insipidus, hypogonadotropic hypogonadism and adrenocorticotropic hormone and thyroid-stimulating hormone deficiency. Despite the hypopituitarism, his IGF-1 levels remained elevated and subsequent oral glucose tolerance test did not show complete growth hormone (GH) suppression. Further review of the pre-operative imaging revealed a 12 × 4 mm pituitary adenoma close to the right carotid artery and no signs of pituitary hyperplasia. At that time, he was also diagnosed with squamous cell carcinoma of the left upper lung lobe finally managed with radical radiotherapy. Treatment with long-acting somatostatin analogue was initiated leading to biochemical control of the acromegaly. Latest imaging has shown no evidence of craniopharyngioma regrowth and stable adenoma. This is a unique case report of co-existence of craniopharyngioma, acromegaly and squamous lung cell carcinoma that highlights diagnostic and management challenges. Potential effects of the GH hypersecretion on the co-existent tumours of this patient are also briefly discussed.

Learning points:

  • Although an extremely rare clinical scenario, craniopharyngioma and acromegaly can co-exist; aetiopathogenic link between these two conditions is unlikely.

  • Meticulous review of unexpected biochemical findings is vital for correct diagnosis of dual pituitary pathology.

  • The potential adverse impact of GH excess due to acromegaly in a patient with craniopharyngioma (and other neoplasm) mandates adequate biochemical control of the GH hypersecretion.

Open access
Ken Takeshima First Department of Internal Medicine, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Ken Takeshima in
Google Scholar
PubMed
Close
,
Hiroyuki Ariyasu First Department of Internal Medicine, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Hiroyuki Ariyasu in
Google Scholar
PubMed
Close
,
Tatsuya Ishibashi First Department of Internal Medicine, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Tatsuya Ishibashi in
Google Scholar
PubMed
Close
,
Shintaro Kawai First Department of Internal Medicine, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Shintaro Kawai in
Google Scholar
PubMed
Close
,
Shinsuke Uraki First Department of Internal Medicine, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Shinsuke Uraki in
Google Scholar
PubMed
Close
,
Jinsoo Koh Department of Neurology, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Jinsoo Koh in
Google Scholar
PubMed
Close
,
Hidefumi Ito Department of Neurology, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Hidefumi Ito in
Google Scholar
PubMed
Close
, and
Takashi Akamizu First Department of Internal Medicine, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Takashi Akamizu in
Google Scholar
PubMed
Close

Summary

Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystem disease affecting muscles, the eyes and the endocrine organs. Diabetes mellitus and primary hypogonadism are endocrine manifestations typically seen in patients with DM1. Abnormalities of hypothalamic–pituitary–adrenal (HPA) axis have also been reported in some DM1 patients. We present a case of DM1 with a rare combination of multiple endocrinopathies; diabetes mellitus, a combined form of primary and secondary hypogonadism, and dysfunction of the HPA axis. In the present case, diabetes mellitus was characterized by severe insulin resistance with hyperinsulinemia. Glycemic control improved after modification of insulin sensitizers, such as metformin and pioglitazone. Hypogonadism was treated with testosterone replacement therapy. Notably, body composition analysis revealed increase in muscle mass and decrease in fat mass in our patient. This implies that manifestations of hypogonadism could be hidden by symptoms of myotonic dystrophy. Our patient had no symptoms associated with adrenal deficiency, so adrenal dysfunction was carefully followed up without hydrocortisone replacement therapy. In this report, we highlight the necessity for evaluation and treatment of multiple endocrinopathies in patients with DM1.

Learning points:

  • DM1 patients could be affected by a variety of multiple endocrinopathies.

  • Our patients with DM1 presented rare combinations of multiple endocrinopathies; diabetes mellitus, combined form of primary and secondary hypogonadism and dysfunction of HPA axis.

  • Testosterone treatment of hypogonadism in patients with DM1 could improve body composition.

  • The patients with DM1 should be assessed endocrine functions and treated depending on the degree of each endocrine dysfunction.

Open access
Rossella Mazzilli Andrology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Rossella Mazzilli in
Google Scholar
PubMed
Close
,
Michele Delfino Andrology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Michele Delfino in
Google Scholar
PubMed
Close
,
Jlenia Elia Andrology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Jlenia Elia in
Google Scholar
PubMed
Close
,
Francesco Benedetti Andrology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Francesco Benedetti in
Google Scholar
PubMed
Close
,
Laura Alesi Genetics Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Laura Alesi in
Google Scholar
PubMed
Close
,
Luciana Chessa Genetics Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Luciana Chessa in
Google Scholar
PubMed
Close
, and
Fernando Mazzilli Andrology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Fernando Mazzilli in
Google Scholar
PubMed
Close

Summary

We report the case of a 19-year-old boy, presenting several congenital malformations (facial dysmorphisms, cardiac and musculoskeletal abnormalities), mental retardation, recurrent respiratory infections during growth and delayed puberty. Although previously hospitalised in other medical centres, only psychological support had been recommended for this patient. In our department, genetic, biochemical/hormonal and ultrasound examinations were undertaken. The karyotype was 49,XXXXY, a rare aneuploidy with an incidence of 1/85 000–100 000, characterised by the presence of three extra X chromosomes in phenotypically male subjects. The hormonal/biochemical profile showed hypergonadotropic hypogonadism, insulin resistance and vitamin D deficiency. The patient was then treated with testosterone replacement therapy. After 12 months of treatment, we observed the normalisation of testosterone levels. There was also an increase in pubic hair growth, testicular volume and penis size, weight loss, homeostatic model assessment index reduction and the normalisation of vitamin D values. Moreover, the patient showed greater interaction with the social environment and context.

Learning points

  • In cases of plurimalformative syndrome, cognitive impairment, recurrent infections during growth and, primarily, delayed puberty, it is necessary to ascertain as soon as possible whether the patient is suffering from hypogonadism or metabolic disorders due to genetic causes. In our case, the diagnosis of hypogonadism, and then of 49,XXXXY syndrome, was unfortunately made only at the age of 19 years.

  • The testosterone replacement treatment, even though delayed, induced positive effects on: i) development of the reproductive system, ii) regulation of the metabolic profile and iii) interaction with the social environment and context.

  • However, earlier and timely hormonal replacement treatment could probably have improved the quality of life of this subject and his family.

Open access