Browse

You are looking at 1 - 10 of 12 items

Open access

M A Shehab, Tahseen Mahmood, M A Hasanat, Md Fariduddin, Nazmul Ahsan, Mohammad Shahnoor Hossain, Md Shahdat Hossain and Sharmin Jahan

Summary

Congenital adrenal hyperplasia (CAH) due to the three-beta-hydroxysteroid-dehydrogenase (3β-HSD) enzyme deficiency is a rare autosomal recessive disorder presenting with sexual precocity in a phenotypic male. Klinefelter syndrome (KS) is the most common sex chromosome aneuploidy presenting with hypergonadotropic hypogonadism in a male. However, only a handful of cases of mosaic KS have been described in the literature. The co-existence of mosaic KS with CAH due to 3β-HSD enzyme deficiency portrays a unique diagnostic paradox where features of gonadal androgen deficiency are masked by simultaneous adrenal androgen excess. Here, we report a 7-year-old phenotypic male boy who, at birth presented with ambiguous genitalia, probably a microphallus with penoscrotal hypospadias. Later on, he developed accelerated growth with advanced bone age, premature pubarche, phallic enlargement and hyperpigmentation. Biochemically, the patient was proven to have CAH due to 3β-HSD deficiency. However, the co-existence of bilateral cryptorchidism made us to consider the possibility of hypogonadism as well, and it was further explained by concurrent existence of mosaic KS (47,XXY/46,XX). He was started on glucocorticoid and mineralocorticoid replacement and underwent right-sided orchidopexy on a later date. He showed significant clinical and biochemical improvement on subsequent follow-up. However, the declining value of serum testosterone was accompanied by rising level of FSH thereby unmasking hypergonadotropic hypogonadism due to mosaic KS. In future, we are planning to place him on androgen replacement as well.

Learning points:

  • Ambiguous genitalia with subsequent development of sexual precocity in a phenotypic male points towards some unusual varieties of CAH.

  • High level of serum testosterone, adrenal androgen, plasma ACTH and low basal cortisol are proof of CAH, whereas elevated level of 17-OH pregnenolone is biochemical marker of 3β-HSD enzyme deficiency.

  • Final diagnosis can be obtained with sequencing of HSD3B2 gene showing various mutations.

  • Presence of bilateral cryptorchidism in such a patient may be due to underlying hypogonadism.

  • Karyotyping in such patient may rarely show mosaic KS (47,XXY/46,XX) and there might be unmasking of hypergonadotropic hypogonadism resulting from adrenal androgen suppression from glucocorticoid treatment.

Open access

Lukas Burget, Laura Audí Parera, Monica Fernandez-Cancio, Rolf Gräni, Christoph Henzen and Christa E Flück

Summary

Steroidogenic acute regulatory protein (STAR) is a key protein for the intracellular transport of cholesterol to the mitochondrium in endocrine organs (e.g. adrenal gland, ovaries, testes) and essential for the synthesis of all steroid hormones. Several mutations have been described and the clinical phenotype varies strongly and may be grouped into classic lipoid congenital adrenal hyperplasia (LCAH), in which all steroidogenesis is disrupted, and non-classic LCAH, which resembles familial glucocorticoid deficiency (FGD), which affects predominantly adrenal functions. Classic LCAH is characterized by early and potentially life-threatening manifestation of primary adrenal insufficiency (PAI) with electrolyte disturbances and 46,XY disorder of sex development (DSD) in males as well as lack of pubertal development in both sexes. Non-classic LCAH manifests usually later in life with PAI. Nevertheless, life-long follow-up of gonadal function is warranted. We describe a 26-year-old female patient who was diagnosed with PAI early in life without detailed diagnostic work-up. At the age of 14 months, she presented with hyperpigmentation, elevated ACTH and low cortisol levels. As her older brother was diagnosed with PAI two years earlier, she was put on hydrocortisone and fludrocortisone replacement therapy before an Addisonian crisis occurred. Upon review of her case in adulthood, consanguinity was noted in the family. Genetic analysis for PAI revealed a homozygous mutation in the STAR gene (c.562C>T, p.Arg188Cys) in both siblings. This mutation has been previously described in non-classic LCAH. This case illustrates that early onset, familial PAI is likely due to autosomal recessive genetic mutations in known genes causing PAI.

Learning points:

  • In childhood-onset PAI, a genetic cause is most likely, especially in families with consanguinity.

  • Adult patients with an etiologically unsolved PAI should be reviewed repeatedly and genetic work-up should be considered.

  • Knowing the exact genetic diagnosis in PAI is essential for genetic counselling and may allow disease-specific treatment.

  • Young men and women with NCLAH due to homozygous STAR Arg188Cys mutation should be investigated for their gonadal function as hypogonadism and infertility might occur during puberty or in early adulthood.

Open access

Xin Feng and Gregory Kline

Summary

In a 61-year-old Caucasian male with prostate cancer, leuprolide and bicalutamide failed to suppress the androgens. He presented to endocrinology with persistently normal testosterone and incidental massive (up to 18 cm) bilateral adrenal myelolipomas on CT scan. Blood test did not reveal metanephrine excess. The patient was noted to have short stature (151 cm) and primary infertility. Elementary school photographs demonstrated precocious puberty. Physical examination revealed palpable abdominal (adrenal) masses. Abiraterone and glucocorticoid treatment was commenced with excellent suppression of testosterone. Genetic testing revealed a mutation in CYP21A2 confirming 21-hydroxylase-deficient congenital adrenal hyperplasia (CAH). Association of large myelolipomas with CAH has been reported in the literature. Our case highlights the importance of considering CAH in patients with non-suppressed testosterone despite androgen deprivation therapy. Large myelolipomas should raise the suspicion of congenital adrenal hyperplasia.

Learning points:

  • Adrenal myelolipomas are rare benign lesions that are more common in patients with longstanding untreated congenital adrenal hyperplasia thought to be due to ACTH stimulation.

  • Consider undiagnosed congenital adrenal hyperplasia in patients with adrenal myelolipoma.

  • Glucocorticoid replacement may be an efficacious treatment for patients with prostate cancer and CAH. Abiraterone therapy has a risk of adrenal crisis if glucocorticoids are not replaced.

Open access

Judith Gerards, Michael M Ritter, Elke Kaminsky, Andreas Gal, Wolfgang Hoeppner and Marcus Quinkler

Summary

DAX1 (NR0B1) is an orphan nuclear receptor, which plays an important role in development and function of the adrenal glands and gonads. Mutations in DAX1 cause X-linked adrenal hypoplasia congenita (X-linked AHC), which is characterized by adrenal insufficiency (AI) and hypogonadotropic hypogonadism (HHG). Affected boys present with adrenal failure usually in childhood and, later in life, with delayed puberty. However, patients with a late-onset form of X-linked AHC have also been described in the past years. We report a male patient who presented with symptoms of an adrenal crisis at the age of 38 years and was later diagnosed with HHG. Family history was positive with several male relatives diagnosed with AI and compatible with the assumed X-chromosomal inheritance of the trait. Direct sequencing of DAX1 of the patient revealed a hemizygous cytosine-to-thymine substitution at nucleotide 64 in exon 1, which creates a novel nonsense mutation (p.(Gln22*)). In order to compare the clinical presentation of the patient to that of other patients with X-linked AHC, we searched the electronic database MEDLINE (PubMed) and found reports of nine other cases with delayed onset of X-linked AHC. In certain cases, genotype–phenotype correlation could be assumed.

Learning points:

  • X-linked AHC is a rare disease characterized by primary AI and hypogonadotropic hypogonadism (HHG). The full-blown clinical picture is seen usually only in males with a typical onset in childhood.

  • Patients with a late-onset form of X-linked AHC have also been described recently. Being aware of this late-onset form might help to reach an early diagnosis and prevent life-threatening adrenal crises.

  • Adult men with primary AI of unknown etiology should be investigated for HHG. Detecting a DAX1 mutation may confirm the clinical diagnosis of late-onset X-linked AHC.

  • In relatives of patients with genetically confirmed X-linked AHC, targeted mutation analysis may help to identify family members at risk and asymptomatic carriers, and discuss conscious family planning.

Open access

Anil Piya, Jasmeet Kaur, Alan M Rice and Himangshu S Bose

Summary

Cholesterol transport into the mitochondria is required for synthesis of the first steroid, pregnenolone. Cholesterol is transported by the steroidogenic acute regulatory protein (STAR), which acts at the outer mitochondrial membrane prior to its import. Mutations in the STAR protein result in lipoid congenital adrenal hyperplasia (CAH). Although the STAR protein consists of seven exons, biochemical analysis in nonsteroidogenic COS-1 cells showed that the first two were not essential for pregnenolone synthesis. Here, we present a patient with ambiguous genitalia, salt-lossing crisis within two weeks after birth and low cortisol levels. Sequence analysis of the STAR, including the exon–intron boundaries, showed the complete deletion of exon 1 as well as more than 50 nucleotides upstream of STAR promoter. Mitochondrial protein import with the translated protein through synthesis cassette of the mutant STAR lacking exon 1 showed protein translation, but it is less likely to have synthesized without a promoter in our patient. Thus, a full-length STAR gene is necessary for physiological mitochondrial cholesterol transport in vivo.

Learning points:

  • STAR exon 1 deletion caused lipoid CAH.

  • Exon 1 substitution does not affect biochemical activity.

  • StAR promoter is responsible for gonadal development.

Open access

T O’Shea, R K Crowley, M Farrell, S MacNally, P Govender, J Feeney, J Gibney and M Sherlock

Summary

Meningioma growth has been previously described in patients receiving oestrogen/progestogen therapy. We describe the clinical, radiological, biochemical and pathologic findings in a 45-year-old woman with congenital adrenal hyperplasia secondary to a defect in the 21-hydroxylase enzyme who had chronic poor adherence to glucocorticoid therapy with consequent virilisation. The patient presented with a frontal headache and marked right-sided proptosis. Laboratory findings demonstrated androgen excess with a testosterone of 18.1 nmol/L (0–1.5 nmol) and 17-Hydroxyprogesterone >180 nmol/L (<6.5 nmol/L). CT abdomen was performed as the patient complained of rapid-onset increasing abdominal girth and revealed bilateral large adrenal myelolipomata. MRI brain revealed a large meningioma involving the right sphenoid wing with anterior displacement of the right eye and associated bony destruction. Surgical debulking of the meningioma was performed and histology demonstrated a meningioma, which stained positive for the progesterone receptor. Growth of meningioma has been described in postmenopausal women receiving hormone replacement therapy, in women receiving contraceptive therapy and in transsexual patients undergoing therapy with high-dose oestrogen and progestogens. Progesterone receptor positivity has been described previously in meningiomas. 17-Hydroxyprogesterone is elevated in CAH and has affinity and biological activity at the progesterone receptor. Therefore, we hypothesise that patients who have long-standing increased adrenal androgen precursor concentrations may be at risk of meningioma growth.

Learning points:

  • Patients with long-standing CAH (particularly if not optimally controlled) may present with other complications, which may be related to long-standing elevated androgen or decreased glucocorticoid levels.

  • Chronic poor control of CAH is associated with adrenal myelolipoma and adrenal rest tissue tumours.

  • Meningiomas are sensitive to endocrine stimuli including progesterone, oestrogen and androgens as they express the relevant receptors.

Open access

Jasmeet Kaur, Alan M Rice, Elizabeth O’Connor, Anil Piya, Bradley Buckler and Himangshu S Bose

Congenital adrenal hyperplasia (CAH) is caused by mutations in cytochrome P450 side chain cleavage enzyme (CYP11A1 and old name, SCC). Errors in cholesterol side chain cleavage by the mitochondrial resident CYP11A1 results in an inadequate amount of pregnenolone production. This study was performed to evaluate the cause of salt-losing crisis and possible adrenal failure in a pediatric patient whose mother had a history of two previous stillbirths and loss of another baby within a week of birth. CAH can appear in any population in any region of the world. The study was conducted at Memorial University Medical Center and Mercer University School of Medicine. The patient was admitted to Pediatric Endocrinology Clinic due to salt-losing crisis and possible adrenal failure. The patient had CAH, an autosomal recessive disease, due to a novel mutation in exon 5 of the CYP11A1 gene, which generated a truncated protein of 286 amino acids compared with wild-type protein that has 521 amino acids (W286X). Although unrelated, both parents are carriers. Mitochondrial protein import analysis of the mutant CYP11A1 in steroidogenic MA-10 cells showed that the protein is imported in a similar fashion as observed for the wild-type protein and was cleaved to a shorter fragment. However, mutant’s activity was 10% of that obtained for the wild-type protein in non-steroidogenic COS-1 cells. In a patient of Mexican descent, a homozygous CYP11A1 mutation caused CAH, suggesting that this disease is not geographically restricted even in a homogeneous population.

Learning points:

  • Novel mutation in CYP11A1 causes CAH;

  • This is a pure population from Central Mexico;

  • Novel mutation created early truncated protein.

Open access

Jasmeet Kaur, Luis Casas and Himangshu S Bose

Summary

Lipoid congenital adrenal hyperplasia (lipoid CAH), the most severe form of CAH, is most commonly caused by mutations in steroidogenic acute regulatory protein (STAR), which is required for the movement of cholesterol from the outer to the inner mitochondrial membranes to synthesize pregnenolone. This study was performed to evaluate whether the salt-losing crisis and the adrenal inactivity experienced by a Scandinavian infant is due to a de novo STAR mutation. The study was conducted at the University of North Dakota, the Mercer University School of Medicine and the Memorial University Medical Center to identify the cause of this disease. The patient was admitted to a pediatric endocrinologist at the Sanford Health Center for salt-losing crisis and possible adrenal failure. Lipoid CAH is an autosomal recessive disease, we identified two de novo heterozygous mutations (STAR c.444C>A (STAR p.N148K) and STAR c.557C>T (STAR p.R193X)) in the STAR gene, causing lipoid CAH. New onset lipoid CAH can occur through de novo mutations and is not restricted to any specific region of the world. This Scandinavian family was of Norwegian descent and had lipoid CAH due to a mutation in S TAR exons 4 and 5. Overexpression of the STAR p.N148K mutant in nonsteroidogenic COS-1 cells supplemented with an electron transport system showed activity similar to the background level, which was ∼10% of that observed with wild-type (WT) STAR. Protein-folding analysis showed that the finger printing of the STAR p.N148K mutant is also different from the WT protein. Inherited STAR mutations may be more prevalent in some geographical areas but not necessarily restricted to those regions.

Learning points

  • STAR mutations cause lipoid CAH.

  • This is a pure population from a caucasian family.

  • Mutation ablated STAR activity.

  • The mutation resulted in loosely folded conformation of STAR.

Open access

Asma Deeb, Hana Al Suwaidi, Salima Attia and Ahlam Al Ameri

Summary

Combined17α-hydroxylase/17,20-lyase deficiency is a rare cause of congenital adrenal hyperplasia and hypogonadism. Hypertension and hypokalemia are essential presenting features. We report an Arab family with four affected XX siblings. The eldest presented with abdominal pain and was diagnosed with a retroperitoneal malignant mixed germ cell tumour. She was hypertensive and hypogonadal. One sibling presented with headache due to hypertension while the other two siblings were diagnosed with hypertension on a routine school check. A homozygous R96Q missense mutation in P450c17 was detected in the index case who had primary amenorrhea and lack of secondary sexual characters at 17 years. The middle two siblings were identical twins and had no secondary sexual characters at the age of 14. All siblings had hypokalemia, very low level of adrenal androgens, high ACTH and high levels of aldosterone substrates. Treatment was commenced with steroid replacement and puberty induction with estradiol. The index case had surgical tumor resection and chemotherapy. All siblings required antihypertensive treatment and the oldest remained on two antihypertensive medications 12 years after diagnosis. Her breast development remained poor despite adequate hormonal replacement. Combined 17α-hydroxylase/17,20-lyase deficiency is a rare condition but might be underdiagnosed. It should be considered in young patients presenting with hypertension, particularly if there is a family history of consanguinity and with more than one affected sibling. Antihypertensive medication might continue to be required despite adequate steroid replacement. Breast development may remain poor in mutations causing complete form of the disease.

Learning points

  • Endocrine hypertension due to rarer forms of CAH should be considered in children and adolescents, particularly if more than one sibling is affected and in the presence of consanguinity.

  • 17α-hydroxylase/17,20-lyase deficiency is a rare form of CAH but might be underdiagnosed.

  • Blood pressure measurement should be carried out in all females presenting with hypogonadism.

  • Anti-hypertensive medications might be required despite adequate steroid replacement.

  • Initial presenting features might vary within affected members of the same family.

  • Adverse breast development might be seen in the complete enzyme deficiency forms of the disease.

Open access

Geetanjali Kale, Elaine M Pelley and Dawn Belt Davis

Summary

Myelolipomas have been reported in patients with congenital adrenal hyperplasia (CAH). ACTH excess, as seen with non-adherence to glucocorticoid therapy, may be responsible for tumor development. We report a case of a 51-year-old man with classic salt-wasting CAH managed on prednisone 7.5 mg daily and fludrocortisone who presented with chronic back pain and was found to have giant bilateral retroperitoneal masses. On computed tomography (CT) imaging, the masses were heterogeneous, but contained predominantly low-density fat attenuation. The tumors were resected due to concern for malignancy and mass symptoms. Pathologic examination identified both retroperitoneal masses as myelolipomas. The left tumor was 34×20×13 cm and weighed 4.7 kg and the right tumor was 20 cm in the largest dimension. Adrenal tissue was present in the specimen. The patient reported long-term compliance with glucocorticoid treatment. However, no biochemical monitoring of ACTH levels had occurred. Therefore, it is unclear if ACTH excess contributed to the development of these large tumors in this patient. It was presumed that both adrenal glands were inadvertently removed during surgery and the patient was treated with physiologic replacement doses of hydrocortisone and fludrocortisone postoperatively. In this case, the bilateral adrenalectomy was inadvertent. However, adrenalectomy can be considered as a treatment option in patients with classical CAH under certain circumstances to avoid complications of glucocorticoid excess.

Learning points

  • Myelolipomas should be considered in the differential diagnosis of adrenal or retroperitoneal masses in patients with CAH.

  • On CT imaging, myelolipomas are seen as heterogeneous masses with low-density mature fat interspersed with more dense myeloid tissue.

  • Myelolipomas are usually unilateral and measure <4 cm; however, very large and bilateral tumors have been reported.

  • Treatment of CAH typically involves using supraphysiologic doses of glucocorticoid to suppress adrenal hyperandrogenism. Bilateral adrenalectomy is an alternative treatment option in patients with CAH.

  • There is an association between ACTH excess and increased incidence of adrenal myelolipoma but the direct causal link remains to be established.