Patient Demographics > Country of Treatment > United Kingdom
You are looking at 51 - 60 of 156 items
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
Search for other papers by Punith Kempegowda in
Google Scholar
PubMed
Search for other papers by Lauren Quinn in
Google Scholar
PubMed
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
Search for other papers by Lisa Shepherd in
Google Scholar
PubMed
Search for other papers by Samina Kauser in
Google Scholar
PubMed
Search for other papers by Briony Johnson in
Google Scholar
PubMed
Search for other papers by Alex Lawson in
Google Scholar
PubMed
Search for other papers by Andrew Bates in
Google Scholar
PubMed
Summary
A 62-year-old Asian British female presented with increasing tiredness. She had multiple co-morbidities and was prescribed steroid inhalers for asthma. She had also received short courses of oral prednisolone for acute asthma exacerbations in the last 2 years. Unfortunately, the frequency and dose of steroids for asthma was unclear from history. Her type 2 diabetes mellitus (DM) control had deteriorated over a short period of time (HbA1c: 48–85 mmol/mol). Blood tests revealed undetectable cortisol and ACTH (<28 mmol/L, <5.0 ng/L). Renin, electrolytes and thyroid function were within normal limits. A diagnosis of secondary adrenal insufficiency, likely due to long-term steroid inhaler and recurrent short courses of oral steroids for asthma exacerbations was made. Patient was commenced on hydrocortisone 10 mg, 5 mg and 5 mg regimen. Steroid inhaler was discontinued following consultation with respiratory physicians. Despite discontinuation of inhaled steroids, patient continued not to mount a response to Synacthen®. Upon further detailed history, patient admitted taking a ‘herbal’ preparation for chronic osteoarthritic knee pain. Toxicology analysis showed presence of dexamethasone, ciprofloxacin, paracetamol, diclofenac, ibuprofen and cimetidine in the herbal medication. Patient was advised to discontinue her herbal preparation. We believe the cause of secondary adrenal insufficiency in our patient was the herbal remedy containing dexamethasone, explaining persistent adrenal suppression despite discontinuation of all prescribed steroids, further possibly contributing to obesity, hypertension and suboptimal control of DM. In conclusion, a comprehensive drug history including herbal and over-the-counter preparations should be elucidated. Investigation for the presence of steroids in these preparations should be considered when patients persist to have secondary adrenal insufficiency despite discontinuation of prescribed steroid medications.
Learning points:
-
The likelihood of complementary and alternative medicines (CAMs) in medication-induced secondary adrenal insufficiency should be considered in any patient presenting with potential symptoms of adrenal insufficiency.
-
If the contents of CAM preparation cannot be ascertained, toxicology screening should be considered.
-
Patients should be advised to stop taking CAM preparation when it contains steroids and hydrocortisone replacement therapy commenced, with periodic reassessment of adrenal function, and then if indicated weaned accordingly.
-
Patients should be informed about the contents of CAM therapies, so they can make a truly informed choice regarding the risks and benefits.
-
This case also highlights a need to increase regulatory processes over CAM therapies, given their propensity to contain a number of undisclosed medications and potent steroids.
Search for other papers by Daphne Yau in
Google Scholar
PubMed
Search for other papers by Maria Salomon-Estebanez in
Google Scholar
PubMed
Search for other papers by Amish Chinoy in
Google Scholar
PubMed
Search for other papers by John Grainger in
Google Scholar
PubMed
Search for other papers by Ross J Craigie in
Google Scholar
PubMed
Search for other papers by Raja Padidela in
Google Scholar
PubMed
Search for other papers by Mars Skae in
Google Scholar
PubMed
Search for other papers by Mark J Dunne in
Google Scholar
PubMed
Search for other papers by Philip G Murray in
Google Scholar
PubMed
Search for other papers by Indraneel Banerjee in
Google Scholar
PubMed
Summary
Congenital hyperinsulinism (CHI) is an important cause of severe hypoglycaemia in infancy. To correct hypoglycaemia, high concentrations of dextrose are often required through a central venous catheter (CVC) with consequent risk of thrombosis. We describe a series of six cases of CHI due to varying aetiologies from our centre requiring CVC for the management of hypoglycaemia, who developed thrombosis in association with CVC. We subsequently analysed the incidence and risk factors for CVC-associated thrombosis, as well as the outcomes of enoxaparin prophylaxis. The six cases occurred over a 3-year period; we identified an additional 27 patients with CHI who required CVC insertion during this period (n = 33 total), and a separate cohort of patients with CHI and CVC who received enoxaparin prophylaxis (n = 7). The incidence of CVC-associated thrombosis was 18% (6/33) over the 3 years, a rate of 4.2 thromboses/1000 CVC days. There was no difference in the frequency of genetic mutations or focal CHI in those that developed thromboses. However, compound heterozygous/homozygous potassium ATP channel mutations correlated with thrombosis (R2 = 0.40, P = 0.001). No difference was observed in CVC duration, high concentration dextrose or glucagon infused through the CVC. In patients receiving enoxaparin prophylaxis, none developed thrombosis or bleeding complications. The characteristics of these patients did not differ significantly from those with thrombosis not on prophylaxis. We therefore conclude that CVC-associated thrombosis can occur in a significant proportion (18%) of patients with CHI, particularly in severe CHI, for which anticoagulant prophylaxis may be indicated.
Learning points:
-
CVC insertion is one of the most significant risk factors for thrombosis in the paediatric population.
-
Risk factors for CVC-associated thrombosis include increased duration of CVC placement, malpositioning and infusion of blood products.
-
To our knowledge, this is the first study to evaluate CVC-associated thrombosis in patients with congenital hyperinsulinism (CHI).
-
The incidence of CVC-associated thrombosis development is significant (18%) in CHI patients and higher compared to other neonates with CVC. CHI severity may be a risk factor for thrombosis development.
-
Although effective prophylaxis for CVC-associated thrombosis in infancy is yet to be established, our preliminary experience suggests the safety and efficacy of enoxoaparin prophylaxis in this population and requires on-going evaluation.
Search for other papers by Tejhmal Rehman in
Google Scholar
PubMed
Search for other papers by Ali Hameed in
Google Scholar
PubMed
Search for other papers by Nigel Beharry in
Google Scholar
PubMed
Search for other papers by J Du Parcq in
Google Scholar
PubMed
Search for other papers by Gul Bano in
Google Scholar
PubMed
Summary
Beta-human chorionic gonadotropin (βhCG) is normally produced by syncytiotrophoblasts of the placenta during pregnancy and aids embryo implantation. However, it is also secreted in varying amounts in non-pregnant conditions commonly heralding a neoplastic process. We present a case of 50-year-old man, who presented with bilateral gynaecomastia with elevated testosterone, oestradiol, suppressed gonadotropins with progressively increasing levels of human chorionic gonadotropin (hCG). Biochemical and radiological investigations including ultrasonography of testes, breast tissue, MRI pituitary and CT scan full body did not identify the source of hCG. FDG PET scan revealed a large mediastinal mass with lung metastasis. Immunostaining and histological analysis confirmed the diagnosis of primary choriocarcinoma of the mediastinum. It is highly aggressive and malignant tumor with poor prognosis. Early diagnosis and management are essential for the best outcome.
Learning points:
-
High βhCG in a male patient or a non-pregnant female suggests a paraneoplastic syndrome.
-
In the case of persistently positive serum hCG, exclude immunoassay interference by doing the urine hCG as heterophilic antibodies are not present in the urine.
-
Non-gestational choriocarcinoma is an extremely rare trophoblastic tumor and should be considered in young men presenting with gynaecomastia and high concentration of hCG with normal gonads.
-
A high index of suspicion and extensive investigations are required to establish an early diagnosis of extra-gonadal choriocarcinoma.
-
Early diagnosis is crucial to formulate optimal management strategy and to minimize widespread metastasis for best clinical outcome.
Search for other papers by Gemma White in
Google Scholar
PubMed
Search for other papers by Nicola Tufton in
Google Scholar
PubMed
Search for other papers by Scott A Akker in
Google Scholar
PubMed
Summary
At least 40% of phaeochromocytomas and paraganglioma’s (PPGLs) are associated with an underlying genetic mutation. The understanding of the genetic landscape of these tumours has rapidly evolved, with 18 associated genes now identified. Among these, mutations in the subunits of succinate dehydrogenase complex (SDH) are the most common, causing around half of familial PPGL cases. Occurrence of PPGLs in carriers of SDHB, SDHC and SDHD subunit mutations has been long reported, but it is only recently that variants in the SDHA subunit have been linked to PPGL formation. Previously documented cases have, to our knowledge, only been found in isolated cases where pathogenic SDHA variants were identified retrospectively. We report the case of an asymptomatic suspected carotid body tumour found during surveillance screening in a 72-year-old female who is a known carrier of a germline SDHA pathogenic variant. To our knowledge, this is the first screen that detected PPGL found in a previously identified SDHA pathogenic variant carrier, during surveillance imaging. This finding supports the use of cascade genetic testing and surveillance screening in all carriers of a pathogenic SDHA variant.
Learning points:
-
SDH mutations are important causes of PPGL disease.
-
SDHA is much rarer compared to SDHB and SDHD mutations.
-
Pathogenicity and penetrance are yet to be fully determined in cases of SDHA-related PPGL.
-
Surveillance screening should be used for SDHA PPGL cases to identify recurrence, metastasis or metachronous disease.
-
Surveillance screening for SDH-related disease should be performed in identified carriers of a pathogenic SDHA variant.
Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
Search for other papers by A Chinoy in
Google Scholar
PubMed
Search for other papers by N B Wright in
Google Scholar
PubMed
Search for other papers by M Bone in
Google Scholar
PubMed
Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
Search for other papers by R Padidela in
Google Scholar
PubMed
Summary
Hypokalaemia at presentation of diabetic ketoacidosis is uncommon as insulin deficiency and metabolic acidosis shifts potassium extracellularly. However, hypokalaemia is a recognised complication of the management of diabetic ketoacidosis as insulin administration and correction of metabolic acidosis shifts potassium intracellularly. We describe the case of a 9-year-old girl with newly diagnosed type 1 diabetes mellitus presenting in diabetic ketoacidosis, with severe hypokalaemia at presentation due to severe and prolonged emesis. After commencing management for her diabetic ketoacidosis, her serum sodium and osmolality increased rapidly. However, despite maximal potassium concentrations running through peripheral access, and multiple intravenous potassium ‘corrections’, her hypokalaemia persisted. Seventy two hours after presentation, she became drowsy and confused, with imaging demonstrating central pontine myelinolysis – a rare entity seldom seen in diabetic ketoacidosis management in children despite rapid shifts in serum sodium and osmolality. We review the literature associating central pontine myelinolysis with hypokalaemia and hypothesise as to how the hypokalaemia may have contributed to the development of central pontine myelinolysis. We also recommend an approach to the management of a child in diabetic ketoacidosis with hypokalaemia at presentation.
Learning points:
-
Hypokalaemia is a recognised complication of treatment of paediatric diabetic ketoacidosis that should be aggressively managed to prevent acute complications.
-
Central pontine myelinolysis is rare in children, and usually observed in the presence of rapid correction of hyponatraemia. However, there is observational evidence of an association between hypokalaemia and central pontine myelinolysis, potentially by priming the endothelial cell membrane to injury by lesser fluctuations in osmotic pressure.
-
Consider central pontine myelinolysis as a complication of the management of paediatric diabetic ketoacidosis in the presence of relevant symptoms with profound hypokalaemia and/or fluctuations in serum sodium levels.
-
We have suggested an approach to the management strategies of hypokalaemia in paediatric diabetic ketoacidosis which includes oral potassium supplements if tolerated, minimising the duration and the rate of insulin infusion and increasing the concentration of potassium intravenously (via central line if necessary).
Search for other papers by Jonathan Brown in
Google Scholar
PubMed
Search for other papers by Luqman Sardar in
Google Scholar
PubMed
Summary
A 68-year-old previously independent woman presented multiple times to hospital over the course of 3 months with a history of intermittent weakness, vacant episodes, word finding difficulty and reduced cognition. She was initially diagnosed with a TIA, and later with a traumatic subarachnoid haemorrhage following a fall; however, despite resolution of the haemorrhage, symptoms were ongoing and continued to worsen. Confusion screen blood tests showed no cause for the ongoing symptoms. More specialised investigations, such as brain imaging, cerebrospinal fluid analysis, electroencephalogram and serology also gave no clear diagnosis. The patient had a background of hypothyroidism, with plasma thyroid function tests throughout showing normal free thyroxine and a mildly raised thyroid-stimulating hormone (TSH). However plasma anti-thyroid peroxidise (TPO) antibody titres were very high. After discussion with specialists, it was felt she may have a rare and poorly understood condition known as Hashimoto’s encephalopathy (HE). After a trial with steroids, her symptoms dramatically improved and she was able to live independently again, something which would have been impossible at presentation.
Learning points:
-
In cases of subacute onset confusion where most other diagnoses have already been excluded, testing for anti-thyroid antibodies can identify patients potentially suffering from HE.
-
In these patients, and under the guidance of specialists, a trial of steroids can dramatically improve patient’s symptoms.
-
The majority of patients are euthyroid at the time of presentation, and so normal thyroid function tests should not prevent anti-thyroid antibodies being tested for.
-
Due to high titres of anti-thyroid antibodies being found in a small percentage of the healthy population, HE should be treated as a diagnosis of exclusion, particularly as treatment with steroids may potentially worsen the outcome in other causes of confusion, such as infection.
Search for other papers by Ved Bhushan Arya in
Google Scholar
PubMed
Search for other papers by Jennifer Kalitsi in
Google Scholar
PubMed
Search for other papers by Ann Hickey in
Google Scholar
PubMed
Search for other papers by Sarah E Flanagan in
Google Scholar
PubMed
Search for other papers by Ritika R Kapoor in
Google Scholar
PubMed
Summary
Diazoxide is the first-line treatment for patients with hyperinsulinaemic hypoglycaemia (HH). Approximately 50% of patients with HH are diazoxide resistant. However, marked diazoxide sensitivity resulting in severe hyperglycaemia is extremely uncommon and not reported previously in the context of HH due to HNF4A mutation. We report a novel observation of exceptional diazoxide sensitivity in a patient with HH due to HNF4A mutation. A female infant presented with severe persistent neonatal hypoglycaemia and was diagnosed with HH. Standard doses of diazoxide (5 mg/kg/day) resulted in marked hyperglycaemia (maximum blood glucose 21.6 mmol/L) necessitating discontinuation of diazoxide. Lower dose of diazoxide (1.5 mg/kg/day) successfully controlled HH in the proband, which was subsequently confirmed to be due to a novel HNF4A mutation. At 3 years of age, the patient maintains age appropriate fasting tolerance on low dose diazoxide (1.8 mg/kg/day) and has normal development. Diagnosis in proband’s mother and maternal aunt, both of whom carried HNF4A mutation and had been diagnosed with presumed type 1 and type 2 diabetes mellitus, respectively, was revised to maturity-onset diabetes of young (MODY). Proband’s 5-year-old maternal cousin, also carrier of HNF4A mutation, had transient neonatal hypoglycaemia. To conclude, patients with HH due to HNF4A mutation may require lower diazoxide than other group of patients with HH. Educating the families about the risk of marked hyperglycaemia with diazoxide is essential. The clinical phenotype of HNF4A mutation can be extremely variable.
Learning points:
-
Awareness of risk of severe hyperglycaemia with diazoxide is important and patients/families should be accordingly educated.
-
Some patients with HH due to HNF4A mutations may require lower than standard doses of diazoxide.
-
The clinical phenotype of HNF4A mutation can be extremely variable.
Search for other papers by Aisling McCarthy in
Google Scholar
PubMed
Search for other papers by Sophie Howarth in
Google Scholar
PubMed
Search for other papers by Serena Khoo in
Google Scholar
PubMed
Search for other papers by Julia Hale in
Google Scholar
PubMed
Search for other papers by Sue Oddy in
Google Scholar
PubMed
Search for other papers by David Halsall in
Google Scholar
PubMed
Search for other papers by Brian Fish in
Google Scholar
PubMed
Search for other papers by Sashi Mariathasan in
Google Scholar
PubMed
Search for other papers by Katrina Andrews in
Google Scholar
PubMed
Search for other papers by Samson O Oyibo in
Google Scholar
PubMed
Search for other papers by Manjula Samyraju in
Google Scholar
PubMed
Search for other papers by Katarzyna Gajewska-Knapik in
Google Scholar
PubMed
Search for other papers by Soo-Mi Park in
Google Scholar
PubMed
Search for other papers by Diana Wood in
Google Scholar
PubMed
Search for other papers by Carla Moran in
Google Scholar
PubMed
Department of Medical Genetics, Cambridge University, Cambridge, UK
Search for other papers by Ruth T Casey in
Google Scholar
PubMed
Summary
Primary hyperparathyroidism (PHPT) is characterised by the overproduction of parathyroid hormone (PTH) due to parathyroid hyperplasia, adenoma or carcinoma and results in hypercalcaemia and a raised or inappropriately normal PTH. Symptoms of hypercalcaemia occur in 20% of patients and include fatigue, nausea, constipation, depression, renal impairment and cardiac arrythmias. In the most severe cases, uraemia, coma or cardiac arrest can result. Primary hyperparathyroidism in pregnancy is rare, with a reported incidence of 1%. Maternal and fetal/neonatal complications are estimated to occur in 67 and 80% of untreated cases respectively. Maternal complications include nephrolithiasis, pancreatitis, hyperemesis gravidarum, pre-eclampsia and hypercalcemic crises. Fetal complications include intrauterine growth restriction; preterm delivery and a three to five-fold increased risk of miscarriage. There is a direct relationship between the degree of severity of hypercalcaemia and miscarriage risk, with miscarriage being more common in those patients with a serum calcium greater than 2.85 mmol/L. Neonatal complications include hypocalcemia. Herein, we present a case series of three women who were diagnosed with primary hyperparathyroidism in pregnancy. Case 1 was diagnosed with multiple endocrine neoplasia type 1 (MEN1) in pregnancy and required a bilateral neck exploration and subtotal parathyroidectomy in the second trimester of her pregnancy due to symptomatic severe hypercalcaemia. Both case 2 and case 3 were diagnosed with primary hyperparathyroidism due to a parathyroid adenoma and required a unilateral parathyroidectomy in the second trimester. This case series highlights the work-up and the tailored management approach to patients with primary hyperparathyroidism in pregnancy.
Learning points:
-
Primary hyperparathyroidism in pregnancy is associated with a high incidence of associated maternal fetal and neonatal complications directly proportionate to degree of maternal serum calcium levels.
-
Parathyroidectomy is the definitive treatment for primary hyperparathyroidism in pregnancy and was used in the management of all three cases in this series. It is recommended when serum calcium is persistently greater than 2.75 mmol/L and or for the management of maternal or fetal complications of hypercalcaemia. Surgical management, when necessary is ideally performed in the second trimester.
-
Primary hyperparathyroidism is genetically determined in ~10% of cases, where the likelihood is increased in those under 40 years, where there is relevant family history and those with other related endocrinopathies. Genetic testing is a useful diagnostic adjunct and can guide treatment and management options for patients diagnosed with primary hyperparathyroidism in pregnancy, as described in case 1 in this series, who was diagnosed with MEN1 syndrome.
-
Women of reproductive age with primary hyperparathyroidism need to be informed of the risks and complications associated with primary hyperparathyroidism in pregnancy and pregnancy should be deferred and or avoided until curative surgery has been performed and calcium levels have normalised.
Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
Search for other papers by Peter Novodvorsky in
Google Scholar
PubMed
Search for other papers by Ziad Hussein in
Google Scholar
PubMed
Search for other papers by Muhammad Fahad Arshad in
Google Scholar
PubMed
Search for other papers by Ahmed Iqbal in
Google Scholar
PubMed
Search for other papers by Malee Fernando in
Google Scholar
PubMed
Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
Search for other papers by Alia Munir in
Google Scholar
PubMed
Department of General Surgery, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
Search for other papers by Sabapathy P Balasubramanian in
Google Scholar
PubMed
Summary
Spontaneous remission of primary hyperparathyroidism (PHPT) due to necrosis and haemorrhage of parathyroid adenoma, the so-called ‘parathyroid auto-infarction’ is a very rare, but previously described phenomenon. Patients usually undergo parathyroidectomy or remain under close clinical and biochemical surveillance. We report two cases of parathyroid auto-infarction diagnosed in the same tertiary centre; one managed surgically and the other conservatively up to the present time. Case #1 was a 51-year old man with PHPT (adjusted (adj.) calcium: 3.11 mmol/L (reference range (RR): 2.20–2.60 mmol/L), parathyroid hormone (PTH) 26.9 pmol/L (RR: 1.6–6.9 pmol/L) and urine calcium excretion consistent with PHPT) referred for parathyroidectomy. Repeat biochemistry 4 weeks later at the surgical clinic showed normal adj. calcium (2.43 mmol/L) and reduced PTH. Serial ultrasound imaging demonstrated reduction in size of the parathyroid lesion from 33 to 17 mm. Twenty months later, following recurrence of hypercalcaemia, he underwent neck exploration and resection of an enlarged right inferior parathyroid gland. Histology revealed increased fibrosis and haemosiderin deposits in the parathyroid lesion in keeping with auto-infarction. Case #2 was a 54-year-old lady admitted with severe hypercalcaemia (adj. calcium: 4.58 mmol/L, PTH 51.6 pmol/L (RR: 1.6–6.9 pmol/L)) and severe vitamin D deficiency. She was treated with intravenous fluids and pamidronate and 8 days later developed symptomatic hypocalcaemia (1.88 mmol/L) with dramatic decrease of PTH (17.6 pmol/L). MRI of the neck showed a 44 mm large cystic parathyroid lesion. To date, (18 months later), she has remained normocalcaemic.
Learning points:
-
Primary hyperparathyroidism (PHPT) is characterised by excess parathyroid hormone (PTH) secretion arising mostly from one or more autonomously functioning parathyroid adenomas (up to 85%), diffuse parathyroid hyperplasia (<15%) and in 1–2% of cases from parathyroid carcinoma.
-
PHPT and hypercalcaemia of malignancy, account for the majority of clinical presentations of hypercalcaemia.
-
Spontaneous remission of PHPT due to necrosis, haemorrhage and infarction of parathyroid adenoma, the so-called ‘parathyroid auto-infarction’, ‘auto-parathyroidectomy’ or ‘parathyroid apoplexy’ is a very rare in clinical practice but has been previously reported in the literature.
-
In most cases, patients with parathyroid auto-infarction undergo parathyroidectomy. Those who are managed conservatively need to remain under close clinical and biochemical surveillance long-term as in most cases PHPT recurs, sometimes several years after auto-infarction.
Search for other papers by Pedro Marques in
Google Scholar
PubMed
Search for other papers by Nicola Tufton in
Google Scholar
PubMed
Search for other papers by Satya Bhattacharya in
Google Scholar
PubMed
Search for other papers by Mark Caulfield in
Google Scholar
PubMed
Search for other papers by Scott A Akker in
Google Scholar
PubMed
Summary
Mineralocorticoid hypertension is most often caused by autonomous overproduction of aldosterone, but excess of other mineralocorticoid precursors can lead to a similar presentation. 11-Deoxycorticosterone (DOC) excess, which can occur in 11-β hydroxylase or 17-α hydroxylase deficiencies, in DOC-producing adrenocortical tumours or in patients taking 11-β hydroxylase inhibitors, may cause mineralocorticoid hypertension. We report a 35-year-old woman who in the third trimester of pregnancy was found to have a large adrenal mass on routine obstetric ultrasound. On referral to our unit, persistent hypertension and long-standing hypokalaemia was noted, despite good compliance with multiple antihypertensives. Ten years earlier, she had hypertension noted in pregnancy which had persisted after delivery. A MRI scan confirmed the presence of a 12 cm adrenal mass and biochemistry revealed high levels of DOC and low/normal renin, aldosterone and dehydroepiandrosterone, with normal catecholamine levels. The patient was treated with antihypertensives until obstetric delivery, following which she underwent an adrenalectomy. Histology confirmed a large adrenal cortical neoplasm of uncertain malignant potential. Postoperatively, blood pressure and serum potassium normalised, and the antihypertensive medication was stopped. Over 10 years of follow-up, she remains asymptomatic with normal DOC measurements. This case should alert clinicians to the possibility of a diagnosis of a DOC-producing adrenal tumours in patients with adrenal nodules and apparent mineralocorticoid hypertension in the presence of low or normal levels of aldosterone. The associated diagnostic and management challenges are discussed.
Learning points:
-
Hypermineralocorticoidism is characterised by hypertension, volume expansion and hypokalaemic alkalosis and is most commonly due to overproduction of aldosterone. However, excess of other mineralocorticoid products, such as DOC, lead to the same syndrome but with normal or low aldosterone levels.
-
The differential diagnosis of resistant hypertension with low renin and low/normal aldosterone includes congenital adrenal hyperplasia, syndrome of apparent mineralocorticoid excess, Cushing’s syndrome, Liddle’s syndrome and 11-deoxycorticosterone-producing tumours.
-
DOC is one intermediate product in the mineralocorticoid synthesis with weaker activity than aldosterone. However, marked DOC excess seen in 11-β hydroxylase or 17-α hydroxylase deficiencies in DOC-producing adrenocortical tumours or in patients taking 11-β hydroxylase inhibitors, may cause mineralocorticoid hypertension.
-
Excessive production of DOC in adrenocortical tumours has been attributed to reduced activity of the enzymes 11-β hydroxylase and 17-α hydroxylase and increased activity of 21-α hydroxylase.
-
The diagnosis of DOC-producing adrenal tumours is challenging because of its rarity and poor availability of DOC laboratory assays.