Browse

You are looking at 1 - 5 of 5 items for :

  • Immunostaining x
Clear All
Open access

Danielle R Bullock, Bradley S Miller, H Brent Clark and Patricia M Hobday

Summary

IgG4-related hypophysitis is an important diagnostic consideration in patients with a pituitary mass or pituitary dysfunction and can initially present with headaches, visual field deficits and/or endocrine dysfunction. Isolated IgG4-related pituitary disease is rare, with most cases of IgG4-related disease involving additional organ systems. We report the case of a teenage female patient with isolated IgG4-related hypophysitis, diagnosed after initially presenting with headaches. Our patient had no presenting endocrinologic abnormalities. She was treated with surgical resection, prednisolone and rituximab with no further progression of disease and sustained normal endocrine function. This case, the youngest described patient with isolated IgG4-related hypophysitis and uniquely lacking endocrinologic abnormalities, adds to the limited reports of isolated pituitary disease. The use of rituximab for isolated pituitary disease has never been described. While IgG4-related hypophysitis has been increasingly recognized, substantial evidence concerning the appropriate treatment and follow-up of these patients is largely lacking.

Learning points:

  • IgG4-related hypophysitis most often occurs in the setting of additional organ involvement but can be an isolated finding. This diagnosis should therefore be considered in a patient presenting with pituitary abnormalities.

  • Most patients with IgG4-related hypophysitis will have abnormal pituitary function, but normal functioning does not exclude this diagnosis.

  • Corticosteroids have been the mainstay of therapy for IgG4-related disease, with other immunosuppressive regimens being reserved for refractory cases. Further research is needed to understand the effectiveness of corticosteroid-sparing regimens and whether there is utility in using these agents as first-line therapies.

Open access

Benedetta Zampetti, Giorgia Simonetti, Roberto Attanasio, Antonio Silvani and Renato Cozzi

Summary

We describe the 20-year course of a 63-year-old male with a macroprolactinoma that acquired resistance to treatment and aggressive behavior after a 4-year successful treatment with cabergoline. He was submitted to multiple surgical resections by a skilled surgeon, fractionated radiotherapy and was eventually treated with temozolomide. After a first 6-month standard cycle, a relapse occurred and he was treated again successfully.

Learning points:

  • Prolactinomas are the most frequent type of pituitary adenoma.

  • They usually have a benign course.

  • In most cases dopamine-agonist drugs, mainly cabergoline, are first-line (and usually only) treatment.

  • Occasionally prolactinomas can have or acquire resistance to treatment and/or aggressive behavior.

  • Temozolomide (TMZ), an oral alkylating drug, can be effective in such aggressive tumors.

  • Multimodal treatment (surgery, radiation, cabergoline and TMZ) is warranted in aggressive pituitary tumors.

  • We describe here successful rechallenge with TMZ after relapse occurring 18 months after a first TMZ cycle.

Open access

Anne de Bray, Zaki K Hassan-Smith, Jamal Dirie, Edward Littleton, Swarupsinh Chavda, John Ayuk, Paul Sanghera and Niki Karavitaki

Summary

A 48-year-old man was diagnosed with a large macroprolactinoma in 1982 treated with surgery, adjuvant radiotherapy and bromocriptine. Normal prolactin was achieved in 2005 but in 2009 it started rising. Pituitary MRIs in 2009, 2012, 2014 and 2015 were reported as showing empty pituitary fossa. Prolactin continued to increase (despite increasing bromocriptine dose). Trialling cabergoline had no effect (prolactin 191,380 mU/L). In January 2016, he presented with right facial weakness and CT head was reported as showing no acute intracranial abnormality. In late 2016, he was referred to ENT with hoarse voice; left hypoglossal and recurrent laryngeal nerve palsies were found. At this point, prolactin was 534,176 mU/L. Just before further endocrine review, he had a fall and CT head showed a basal skull mass invading the left petrous temporal bone. Pituitary MRI revealed a large enhancing mass within the sella infiltrating the clivus, extending into the left petrous apex and occipital condyle with involvement of the left Meckel’s cave, internal acoustic meatus, jugular foramen and hypoglossal canal. At that time, left abducens nerve palsy was also present. CT thorax/abdomen/pelvis excluded malignancy. Review of previous images suggested that this lesion had started becoming evident below the fossa in pituitary MRI of 2015. Temozolomide was initiated. After eight cycles, there is significant tumour reduction with prolactin 1565 mU/L and cranial nerve deficits have remained stable. Prolactinomas can manifest aggressive behaviour even decades after initial treatment highlighting the unpredictable clinical course they can demonstrate and the need for careful imaging review.

Learning points:

  • Aggressive behaviour of prolactinomas can manifest even decades after first treatment highlighting the unpredictable clinical course these tumours can demonstrate.

  • Escape from control of hyperprolactinaemia in the absence of sellar adenomatous tissue requires careful and systematic search for the anatomical localisation of the lesion responsible for the prolactin excess.

  • Temozolomide is a valuable agent in the therapeutic armamentarium for aggressive/invasive prolactinomas, particularly if they are not amenable to other treatment modalities.

Open access

Joseph A Chorny, John J Orrego and José Manuel Cameselle-Teijeiro

Summary

Most medullary thyroid carcinomas (MTCs) are low grade and produce calcitonin. There are some calcitonin-negative MTCs that produce only calcitonin gene-related peptide (CGRP). Rarely, MTCs are negative for calcitonin and CGRP peptides, but contain their corresponding mRNAs. Primary thyroid neuroendocrine neoplasms other than MTCs are extremely rare. We describe a primary high-grade neuroendocrine carcinoma that was negative for CGRP and calcitonin at both the protein and mRNA levels. A 42-year-old woman presented with a rapidly enlarging thyroid mass replacing most of the left lobe and isthmus. A computed tomography-guided core-needle biopsy was performed. The tumor was composed of sheets of small-to-medium sized epithelial cells. The cells were immunoreactive for pancytokeratin, synaptophysin, CD56 and thyroid transcription factor-1, but negative for CK7, CK20, CD45, CD99, ERG, chromogranin A, thyroglobulin, calcitonin, CGRP and carcinoembryonic antigen. The Ki-67 proliferation index was ~90%. In situ hybridization was negative for calcitonin mRNA. The patient was initially diagnosed as having a small cell carcinoma. She was treated with cisplatin and etoposide (VP16), followed by radiation therapy. Given the excellent clinical course, the tumor was reviewed and reclassified as a high-grade neuroendocrine carcinoma (non-small-cell type). Heretofore, only a few other similar high-grade neuroendocrine tumors with negative markers of C-cell derivation have been reported. In our case, the patient is cancer free five years after diagnosis, but in the other cases, the outcome was poor.

Learning points:

  • There are neuroendocrine carcinomas of the thyroid that do not produce calcitonin or calcitonin gene-related peptide.

  • This category of calcitonin-negative neuroendocrine carcinomas is heterogeneous, consisting of low- and high-grade tumors.

  • The high-grade neuroendocrine carcinomas of the thyroid are rare and generally have a poor prognosis. They are divided into small cell and non-small cell or large cell types.

Open access

Nikolaos Kyriakakis, Jacqueline Trouillas, Mary N Dang, Julie Lynch, Paul Belchetz, Márta Korbonits and Robert D Murray

Summary

A male patient presented at the age of 30 with classic clinical features of acromegaly and was found to have elevated growth hormone levels, not suppressing during an oral glucose tolerance test. His acromegaly was originally considered to be of pituitary origin, based on a CT scan, which was interpreted as showing a pituitary macroadenoma. Despite two trans-sphenoidal surgeries, cranial radiotherapy and periods of treatment with bromocriptine and octreotide, his acromegaly remained active clinically and biochemically. A lung mass was discovered incidentally on a chest X-ray performed as part of a routine pre-assessment for spinal surgery 5 years following the initial presentation. This was confirmed to be a bronchial carcinoid tumour, which was strongly positive for growth hormone-releasing hormone (GHRH) and somatostatin receptor type 2 by immunohistochemistry. The re-examination of the pituitary specimens asserted the diagnosis of pituitary GH hyperplasia. Complete resolution of the patient’s acromegaly was achieved following right lower and middle lobectomy. Seventeen years following the successful resection of the bronchial carcinoid tumour the patient remains under annual endocrine follow-up for monitoring of the hypopituitarism he developed after the original interventions to his pituitary gland, while there has been no evidence of active acromegaly or recurrence of the carcinoid tumour. Ectopic acromegaly is extremely rare, accounting for <1% of all cases of acromegaly. Our case highlights the diagnostic challenges differentiating between ectopic acromegaly and acromegaly of pituitary origin and emphasises the importance of avoiding unnecessary pituitary surgery and radiotherapy. The role of laboratory investigations, imaging and histology as diagnostic tools is discussed.

Learning points:

  • Ectopic acromegaly is rare, accounting for less than 1% of all cases of acromegaly.

  • Ectopic acromegaly is almost always due to extra-pituitary GHRH secretion, mainly from neuroendocrine tumours of pancreatic or bronchial origin.

  • Differentiating between acromegaly of pituitary origin and ectopic acromegaly can cause diagnostic challenges due to similarities in clinical presentation and biochemistry.

  • Serum GHRH can be a useful diagnostic tool to diagnose ectopic acromegaly.

  • Pituitary imaging is crucial to differentiate between a pituitary adenoma and pituitary hyperplasia, which is a common finding in ectopic acromegaly.

  • Diagnosing ectopic acromegaly is pivotal to avoid unnecessary interventions to the pituitary and preserve normal pituitary function.