Browse

You are looking at 1 - 6 of 6 items for :

Clear All
Open access

Ohoud Al Mohareb, Mussa H Al Malki, O Thomas Mueller and Imad Brema

Summary

Resistance to thyroid hormone-beta (RTHbeta) is a rare inherited syndrome characterized by variable reduced tissue responsiveness to the intracellular action of triiodothyronine (T3), the active form of the thyroid hormone. The presentation of RTHbeta is quite variable and mutations in the thyroid hormone receptor beta (THR-B) gene have been detected in up to 90% of patients. The proband was a 34-year-old Jordanian male who presented with intermittent palpitations. His thyroid function tests (TFTs) showed a discordant profile with high free T4 (FT4) at 45.7 pmol/L (normal: 12–22), high free T3 (FT3) at 11.8 pmol/L (normal: 3.1–6.8) and inappropriately normal TSH at 3.19 mIU/L (normal: 0.27–4.2). Work up has confirmed normal alpha subunit of TSH of 0.1 ng/mL (normal <0.5) and pituitary MRI showed no evidence of a pituitary adenoma; however, there was an interesting coincidental finding of partially empty sella. RTHbeta was suspected and genetic testing confirmed a known mutation in the THR-B gene, where a heterozygous A to G base change substitutes valine for methionine at codon 310. Screening the immediate family revealed that the eldest son (5 years old) also has discordant thyroid function profile consistent with RTHbeta and genetic testing confirmed the same M310V mutation that his father harbored. Moreover, the 5-year-old son had hyperactivity, impulsivity and aggressive behavior consistent with attention deficit hyperactivity disorder (ADHD). This case demonstrates an unusual co-existence of RTHbeta and partially empty sella in the same patient which, to our knowledge, has not been reported before.

Learning points:

  • We report the coincidental occurrence of RTHbeta and a partially empty sella in the same patient that has not been previously reported.

  • TFTs should be done in all children who present with symptoms suggestive of ADHD as RTHbeta is a common finding in these children.

  • The management of children with ADHD and RTHbeta could be challenging for both pediatricians and parents and the administration of T3 with close monitoring may be helpful in some cases.

  • Incidental pituitary abnormalities do exist in patients with RTHbeta, although extremely rare, and should be evaluated thoroughly and separately.

Open access

Bidhya Timilsina, Niranjan Tachamo, Prem Raj Parajuli and Ilan Gabriely

Summary

A 74-year-old woman presented with progressive lethargy, confusion, poor appetite and abdominal pain. She was found to have non-PTH-mediated severe hypercalcemia with renal failure and metabolic alkalosis. Extensive workup for hypercalcemia to rule out alternate etiology was unrevealing. Upon further questioning, she was taking excess calcium carbonate (Tums) for her worsening heartburn. She was diagnosed with milk-alkali syndrome (MAS). Her hypercalcemia and alkalosis recovered completely with aggressive hydration along with improvement in her renal function. High index of suspicion should be maintained and history of drug and supplements, especially calcium ingestion, should be routinely asked in patients presenting with hypercalcemia to timely diagnose MAS and prevent unnecessary tests and treatments.

Learning points:

  • Suspect milk-alkali syndrome in patients with hypercalcemia, metabolic alkalosis and renal failure, especially in context of ingestion of excess calcium-containing supplements.

  • Careful history of over-the-counter medications, supplements and diet is crucial to diagnose milk-alkali syndrome.

  • Milk-alkali syndrome may cause severe hypercalcemia in up to 25–30% of cases.

Open access

Adriana de Sousa Lages, Isabel Paiva, Patrícia Oliveira, Francisco Portela and Francisco Carrilho

Summary

Insulinomas are the most frequent cause of hyperinsulinaemic hypoglycaemia. Although surgical enucleation is the standard treatment, a few other options are available to high-risk patients who are elderly or present with co-morbidities. We present a case report of an 89-year-old female patient who was admitted to the emergency department due to recurrent hypoglycaemia, especially during fasting. Laboratory work-up raised the suspicion of hyperinsulinaemic hypoglycaemia, and abdominal CT scan revealed a 12 mm nodular hypervascular lesion of the pancreatic body suggestive of neuroendocrine tumour. The patient was not considered a suitable candidate for surgery, and medical therapy with diazoxide was poorly tolerated. Endoscopic ultrasound-guided ethanol ablation therapy was performed and a total of 0.6 mL of 95% ethanol was injected into the lesion by a transgastric approach; no complications were reported after the procedure. At 5 months of follow-up, no episodes of hypoglycaemia were reported, no diazoxide therapy was necessary, and revaluation abdominal CT scan revealed a pancreatic nodular lesion with a size involution of about half of its original volume. The patient is regularly followed-up at the endocrinology clinic and shows a significant improvement in her wellbeing and quality of life.

Learning points:

  • Insulinomas are the most frequent cause of hyperinsulinaemic hypoglycaemia.

  • Surgical enucleation is the standard treatment with a few other options available to high-risk patients.

  • Endoscopic ultrasound-guided ethanol ablation therapy is one feasible option in high-risk patients with satisfactory clinical outcomes, significant positive impact on quality of life and low complication rates related to the procedure.

Open access

Christine Yu, Inder J Chopra and Edward Ha

Summary

Ipilimumab, a novel therapy for metastatic melanoma, inhibits cytotoxic T-lymphocyte apoptosis, causing both antitumor activity and significant autoimmunity, including autoimmune thyroiditis. Steroids are frequently used in treatment of immune-related adverse events; however, a concern regarding the property of steroids to reduce therapeutic antitumor response exists. This study describes the first reported case of ipilimumab-associated thyroid storm and implicates iopanoic acid as an alternative therapy for immune-mediated adverse effects. An 88-year-old woman with metastatic melanoma presented with fatigue, anorexia, decreased functional status, and intermittent diarrhea for several months, shortly after initiation of ipilimumab – a recombinant human monoclonal antibody to the cytotoxic T-lymphocyte-associated antigen 4 (CTLA4). On arrival, she was febrile, tachycardic, and hypertensive with a wide pulse pressure, yet non-toxic appearing. She had diffuse, non-tender thyromegaly. An electrocardiogram (EKG) revealed supraventricular tachycardia. Blood, urine, and stool cultures were collected, and empiric antibiotics were started. A computed tomography (CT) angiogram of the chest was negative for pulmonary embolism or pneumonia, but confirmed a diffusely enlarged thyroid gland, which prompted thyroid function testing. TSH was decreased at 0.16 μIU/ml (normal 0.3–4.7); free tri-iodothyronine (T3) was markedly elevated at 1031 pg/dl (normal 249–405), as was free thyroxine (T4) at 5.6 ng/dl (normal 0.8–1.6). With iopanoic acid and methimazole therapy, she markedly improved within 48 h, which could be attributed to lowering of serum T3 with iopanoic acid rather than to any effect of the methimazole. Ipilimumab is a cause of overt thyrotoxicosis and its immune-mediated adverse effects can be treated with iopanoic acid, a potent inhibitor of T4-to-T3 conversion.

Learning points

  • While ipilimumab more commonly causes autoimmune thyroiditis, it can also cause thyroid storm and clinicians should include thyroid storm in their differential diagnosis for patients who present with systemic inflammatory response syndrome.

  • Immune-related adverse reactions usually occur after 1–3 months of ipilimumab and baseline thyroid function testing should be completed before initiation with ipilimumab.

  • Conflicting data exist on the use of prednisone for treatment of CTLA4 adverse effects and its attenuation of ipilimumab's antitumor effect. Iopanoic acid may be considered as an alternative therapy in this setting.

Open access

Anna Casteràs, Jürgen Kratzsch, Ángel Ferrández, Carles Zafón, Antonio Carrascosa and Jordi Mesa

Summary

Isolated GH deficiency type IA (IGHDIA) is an infrequent cause of severe congenital GHD, often managed by pediatric endocrinologists, and hence few cases in adulthood have been reported. Herein, we describe the clinical status of a 56-year-old male with IGHDIA due to a 6.7 kb deletion in GH1 gene that encodes GH, located on chromosome 17. We also describe phenotypic and biochemical parameters, as well as characterization of anti-GH antibodies after a new attempt made to treat with GH. The height of the adult patient was 123 cm. He presented with type 2 diabetes mellitus, dyslipidemia, osteoporosis, and low physical and psychological performance, compatible with GHD symptomatology. Anti-GH antibodies in high titers and with binding activity (>101 IU/ml) were found 50 years after exposure to exogenous GH, and their levels increased significantly (>200 U/ml) after a 3-month course of 0.2 mg/day recombinant human GH (rhGH) treatment. Higher doses of rhGH (1 mg daily) did not overcome the blockade, and no change in undetectable IGF1 levels was observed (<25 ng/ml). IGHDIA patients need lifelong medical surveillance, focusing mainly on metabolic disturbances, bone status, cardiovascular disease, and psychological support. Multifactorial conventional therapy focusing on each issue is recommended, as anti-GH antibodies may inactivate specific treatment with exogenous GH. After consideration of potential adverse effects, rhIGF1 treatment, even theoretically indicated, has not been considered in our patient yet.

Learning points

  • Severe isolated GHD may be caused by mutations in GH1 gene, mainly a 6.7 kb deletion.

  • Appearance of neutralizing anti-GH antibodies upon recombinant GH treatment is a characteristic feature of IGHDIA.

  • Recombinant human IGF1 treatment has been tested in children with IGHDIA with variable results in height and secondary adverse effects, but any occurrence in adult patients has not been reported yet.

  • Metabolic disturbances (diabetes and hyperlipidemia) and osteoporosis should be monitored and properly treated to minimize cardiovascular disease and fracture risk.

  • Cerebral magnetic resonance imaging should be repeated in adulthood to detect morphological abnormalities that may have developed with time, as well as pituitary hormones periodically assessed.

Open access

Caterina Policola, Victoria Stokes, Niki Karavitaki and Ashley Grossman

Summary

Opiate drugs such as morphine are in extensive use for pain relief and palliation. It is well established that these drugs can cause changes in endocrine function, but such effects are not always sufficiently appreciated in clinical practice, especially in relation to the hypothalamic–pituitary–adrenal (HPA) axis. Herein, we report on an 18-year-old man who was diagnosed with a slipped left femoral epiphysis following a long history of pain in his leg. On examination, he was thought to look relatively young for his age and therefore the orthopaedic surgeons arranged an endocrine assessment, which showed an undetectable concentration of serum cortisol and a suppressed concentration of testosterone; therefore, he was referred urgently with a diagnosis of hypopituitarism. We elicited a history that he had been treated with opiate analgesics for 3 days at the time of his original blood tests. Full endocrine assessment including a short Synacthen test revealed that he now had normal adrenal and pituitary function. We conclude that his morphine therapy had caused profound suppression of his HPA and pituitary–gonadal axes and suggest that clinicians should be aware of these significant changes in patients on even short-term opiate therapy.

Learning points

  • Therapy with opiates is the standard therapy for severe acute and chronic pain.

  • Such drugs cause profound changes in endocrine function.

  • Importantly, opiates suppress the HPA axis at a central level.

  • Short-term therapy with morphine could be the cause of biochemical adrenocortical insufficiency.

  • Morphine and related drugs also suppress the pituitary–gonadal axis.

  • After discontinuation of therapy with such drugs, adrenal function improves.