Browse

You are looking at 1 - 6 of 6 items for :

  • Puberty (early/precocious) x
Clear All
Open access

M A Shehab, Tahseen Mahmood, M A Hasanat, Md Fariduddin, Nazmul Ahsan, Mohammad Shahnoor Hossain, Md Shahdat Hossain and Sharmin Jahan

Summary

Congenital adrenal hyperplasia (CAH) due to the three-beta-hydroxysteroid-dehydrogenase (3β-HSD) enzyme deficiency is a rare autosomal recessive disorder presenting with sexual precocity in a phenotypic male. Klinefelter syndrome (KS) is the most common sex chromosome aneuploidy presenting with hypergonadotropic hypogonadism in a male. However, only a handful of cases of mosaic KS have been described in the literature. The co-existence of mosaic KS with CAH due to 3β-HSD enzyme deficiency portrays a unique diagnostic paradox where features of gonadal androgen deficiency are masked by simultaneous adrenal androgen excess. Here, we report a 7-year-old phenotypic male boy who, at birth presented with ambiguous genitalia, probably a microphallus with penoscrotal hypospadias. Later on, he developed accelerated growth with advanced bone age, premature pubarche, phallic enlargement and hyperpigmentation. Biochemically, the patient was proven to have CAH due to 3β-HSD deficiency. However, the co-existence of bilateral cryptorchidism made us to consider the possibility of hypogonadism as well, and it was further explained by concurrent existence of mosaic KS (47,XXY/46,XX). He was started on glucocorticoid and mineralocorticoid replacement and underwent right-sided orchidopexy on a later date. He showed significant clinical and biochemical improvement on subsequent follow-up. However, the declining value of serum testosterone was accompanied by rising level of FSH thereby unmasking hypergonadotropic hypogonadism due to mosaic KS. In future, we are planning to place him on androgen replacement as well.

Learning points:

  • Ambiguous genitalia with subsequent development of sexual precocity in a phenotypic male points towards some unusual varieties of CAH.
  • High level of serum testosterone, adrenal androgen, plasma ACTH and low basal cortisol are proof of CAH, whereas elevated level of 17-OH pregnenolone is biochemical marker of 3β-HSD enzyme deficiency.
  • Final diagnosis can be obtained with sequencing of HSD3B2 gene showing various mutations.
  • Presence of bilateral cryptorchidism in such a patient may be due to underlying hypogonadism.
  • Karyotyping in such patient may rarely show mosaic KS (47,XXY/46,XX) and there might be unmasking of hypergonadotropic hypogonadism resulting from adrenal androgen suppression from glucocorticoid treatment.
Open access

Philip D Oddie, Benjamin B Albert, Paul L Hofman, Craig Jefferies, Stephen Laughton and Philippa J Carter

Summary

Adrenocortical carcinoma (ACC) during childhood is a rare malignant tumor that frequently results in glucocorticoid and/or androgen excess. When there are signs of microscopic or macroscopic residual disease, adjuvant therapy is recommended with mitotane, an adrenolytic and cytotoxic drug. In addition to the anticipated side effect of adrenal insufficiency, mitotane is known to cause gynecomastia and hypothyroidism in adults. It has never been reported to cause precocious puberty. A 4-year-old girl presented with a 6-week history of virilization and elevated androgen levels and 1-year advancement in bone age. Imaging revealed a right adrenal mass, which was subsequently surgically excised. Histology revealed ACC with multiple unfavorable features, including high mitotic index, capsular invasion and atypical mitoses. Adjuvant chemotherapy was started with mitotane, cisplatin, etoposide and doxorubicin. She experienced severe gastrointestinal side effects and symptomatic adrenal insufficiency, which occurred despite physiological-dose corticosteroid replacement. She also developed hypothyroidism that responded to treatment with levothyroxine and peripheral precocious puberty (PPP) with progressive breast development and rapidly advancing bone age. Five months after discontinuing mitotane, her adrenal insufficiency persisted and she developed secondary central precocious puberty (CPP). This case demonstrates the diverse endocrine complications associated with mitotane therapy, which contrast with the presentation of ACC itself. It also provides the first evidence that the known estrogenic effect of mitotane can manifest as PPP.

Learning points:

  • Adrenocortical carcinoma is an important differential diagnosis for virilization in young children
  • Mitotane is a chemotherapeutic agent that is used to treat adrenocortical carcinoma and causes adrenal necrosis
  • Mitotane is an endocrine disruptor. In addition to the intended effect of adrenal insufficiency, it can cause hypothyroidism, with gynecomastia also reported in adults.
  • Patients taking mitotane require very high doses of hydrocortisone replacement therapy because mitotane interferes with steroid metabolism. This effect persists after mitotane therapy is completed
  • In our case, mitotane caused peripheral precocious puberty, possibly through its estrogenic effect.
Open access

Jia Xuan Siew and Fabian Yap

Summary

Growth anomaly is a prominent feature in Wolf-Hirschhorn syndrome (WHS), a rare congenital disorder caused by variable deletion of chromosome 4p. While growth charts have been developed for WHS patients 0–4 years of age and growth data available for Japanese WHS patients 0–17 years, information on pubertal growth and final height among WHS children remain lacking. Growth hormone (GH) therapy has been reported in two GH-sufficient children with WHS, allowing for pre-puberty catch up growth; however, pubertal growth and final height information was also unavailable. We describe the complete growth journey of a GH-sufficient girl with WHS from birth until final height (FH), in relation to her mid parental height (MPH) and target range (TR). Her growth trajectory and pubertal changes during childhood, when she was treated with growth hormone (GH) from 3 years 8 months old till 6 months post-menarche at age 11 years was fully detailed.

Learning points:

  • Pubertal growth characteristics and FH information in WHS is lacking.
  • While pre-pubertal growth may be improved by GH, GH therapy may not translate to improvement in FH in WHS patients.
  • Longitudinal growth, puberty and FH data of more WHS patients may improve the understanding of growth in its various phases (infancy/childhood/puberty).
Open access

Xin Feng and Gregory Kline

Summary

In a 61-year-old Caucasian male with prostate cancer, leuprolide and bicalutamide failed to suppress the androgens. He presented to endocrinology with persistently normal testosterone and incidental massive (up to 18 cm) bilateral adrenal myelolipomas on CT scan. Blood test did not reveal metanephrine excess. The patient was noted to have short stature (151 cm) and primary infertility. Elementary school photographs demonstrated precocious puberty. Physical examination revealed palpable abdominal (adrenal) masses. Abiraterone and glucocorticoid treatment was commenced with excellent suppression of testosterone. Genetic testing revealed a mutation in CYP21A2 confirming 21-hydroxylase-deficient congenital adrenal hyperplasia (CAH). Association of large myelolipomas with CAH has been reported in the literature. Our case highlights the importance of considering CAH in patients with non-suppressed testosterone despite androgen deprivation therapy. Large myelolipomas should raise the suspicion of congenital adrenal hyperplasia.

Learning points:

  • Adrenal myelolipomas are rare benign lesions that are more common in patients with longstanding untreated congenital adrenal hyperplasia thought to be due to ACTH stimulation.
  • Consider undiagnosed congenital adrenal hyperplasia in patients with adrenal myelolipoma.
  • Glucocorticoid replacement may be an efficacious treatment for patients with prostate cancer and CAH. Abiraterone therapy has a risk of adrenal crisis if glucocorticoids are not replaced.
Open access

Guadalupe Vargas, Lourdes-Josefina Balcazar-Hernandez, Virgilio Melgar, Roser-Montserrat Magriña-Mercado, Baldomero Gonzalez, Javier Baquera and Moisés Mercado

A 19-year-old woman with a history of isosexual precocious puberty and bilateral oophorectomy at age 10 years because of giant ovarian cysts, presents with headaches and mild symptoms and signs of hyperthyroidism. Hormonal evaluation revealed elevated FSH and LH levels in the postmenopausal range and free hyperthyroxinemia with an inappropriately normal TSH. Pituitary MRI showed a 2-cm macroadenoma with suprasellar extension. She underwent successful surgical resection of the pituitary tumor, which proved to be composed of two distinct populations of cells, each of them strongly immunoreactive for FSH and TSH, respectively. This mixed adenoma resulted in two different hormonal hypersecretion syndromes: the first one during childhood and consisting of central precocious puberty and ovarian hyperstimulation due to the excessive secretion of biologically active FSH and which was not investigated in detail and 10 years later, central hyperthyroidism due to inappropriate secretion of biologically active TSH. Although infrequent, two cases of isosexual central precocious puberty in girls due to biologically active FSH secreted by a pituitary adenoma have been previously reported in the literature. However, this is the first reported case of a mixed adenoma capable of secreting both, biologically active FSH and TSH.

Learning points:

  • Although functioning gonadotrophinomas are infrequent, they should be included in the differential diagnosis of isosexual central precocious puberty.
  • Some functioning gonadotrophinomas are mixed adenomas, secreting other biologically active hormones besides FSH, such as TSH.
  • Early recognition and appropriate treatment of these tumors by transsphenoidal surgery is crucial in order to avoid unnecessary therapeutic interventions that may irreversibly compromise gonadal function.
Open access

Renata Lange, Caoê Von Linsingen, Fernanda Mata, Aline Barbosa Moraes, Mariana Arruda and Leonardo Vieira Neto

Summary

Ring chromosomes (RCs) are uncommon cytogenetic findings, and RC11 has only been described in 19 cases in the literature. Endocrine abnormalities associated with RC11 were reported for two of these cases. The clinical features of RC11 can result from an alteration in the structure of the genetic material, ring instability, mosaicism, and various extents of genetic material loss. We herein describe a case of RC11 with clinical features of 11q-syndrome and endocrine abnormalities that have not yet been reported. A 20-year-old female patient had facial dysmorphism, short stature, psychomotor developmental delays, a ventricular septal defect, and thrombocytopenia. Karyotyping demonstrated RC11 (46,XX,r(11)(p15q25)). This patient presented with clinical features that may be related to Jacobsen syndrome, which is caused by partial deletion of the long arm of chromosome 11. Regarding endocrine abnormalities, our patient presented with precocious puberty followed by severe hirsutism, androgenic alopecia, clitoromegaly, and amenorrhea, which were associated with overweight, type 2 diabetes mellitus (T2DM), and hyperinsulinemia; therefore, this case meets the diagnostic criteria for polycystic ovary syndrome. Endocrine abnormalities are rare in patients with RC11, and the association of RC11 with precocious puberty, severe clinical hyperandrogenism, insulin resistance, and T2DM has not been reported previously. We speculate that gene(s) located on chromosome 11 might be involved in the pathogenesis of these conditions. Despite the rarity of RCs, studies to correlate the genes located on the chromosomes with the phenotypes observed could lead to major advances in the understanding and treatment of more prevalent diseases.

Learning points

  • We hypothesize that the endocrine features of precocious puberty, severe clinical hyperandrogenism, insulin resistance, and T2DM might be associated with 11q-syndrome.
  • A karyotype study should be performed in patients with short stature and facial dysmorphism.
  • Early diagnosis and adequate management of these endocrine abnormalities are essential to improve the quality of life of the patient and to prevent other chronic diseases, such as diabetes and its complications.