Browse

You are looking at 1 - 2 of 2 items for :

  • Error in diagnosis/pitfalls and caveats x
Clear All
Open access

Tessa Glyn, Beverley Harris and Kate Allen

Summary

We present the case of a 57-year-old lady who had a delayed diagnosis of central hypothyroidism on a background of Grave’s thyrotoxicosis and a partial thyroidectomy. During the twenty years following her partial thyroidectomy, the patient developed a constellation of symptoms and new diagnoses, which were investigated by numerous specialists from various fields, namely rheumatology, renal and respiratory. She developed significantly impaired renal function and raised creatine kinase (CK). She was also referred to a tertiary neurology service for investigation of myositis, which resulted in inconclusive muscle biopsies. Recurrently normal TSH results reassured clinicians that this did not relate to previous thyroid dysfunction. In 2015, she developed increased shortness of breath and was found to have a significant pericardial effusion. The clinical biochemist reviewed this lady’s blood results and elected to add on a free T4 (fT4) and free T3 (fT3), which were found to be <0.4 pmol/L (normal range (NR): 12–22 pmol/L) and 0.3 pmol/L (NR: 3.1–6.8 pmol/L), respectively. She was referred urgently to the endocrine services and commenced on Levothyroxine replacement for profound central hypothyroidism. Her other pituitary hormones and MRI were normal. In the following year, her eGFR and CK normalised, and her myositis symptoms, breathlessness and pericardial effusion resolved. One year following initiation of Levothyroxine, her fT4 and fT3 were in the normal range for the first time. This case highlights the pitfalls of relying purely on TSH for excluding hypothyroidism and the devastating effect the delay in diagnosis had upon this patient.

Learning points:

  • Isolated central hypothyroidism is very rare, but should be considered irrespective of previous thyroid disorders.

  • If clinicians have a strong suspicion that a patient may have hypothyroidism despite normal TSH, they should ensure they measure fT3 and fT4.

  • Laboratories that do not perform fT3 and fT4 routinely should review advice sent to requesting clinicians to include a statement explaining that a normal TSH excludes primary but not secondary hypothyroidism.

  • Thyroid function tests should be performed routinely in patients presenting with renal impairment or a raised CK.

Open access

Ruth Mangupli, Adrian F Daly, Elvia Cuauro, Paul Camperos, Jaime Krivoy and Albert Beckers

Summary

A 20-year-old man with an 8-year history of progressive enlargement of his hands and feet, coarsening facial features, painful joints and thickened, oily skin was referred for investigation of acromegaly. On examination, the subject was of normal height and weight. He had markedly increased skin thickness around the forehead, eyelids and scalp with redundant skin folds. Bilateral painful knee swelling was accompanied by enlargement of the extremities, and his fingers were markedly clubbed. Routine hematological, biochemical and hormonal blood tests, including GH and IGF-1 were normal. The clinical picture suggested primary hypertrophic osteoarthropathy (PHOA) rather than acromegaly and radiological studies were supportive of this, demonstrating increased subperiosteal bone formation and increased bone density and cortical thickening. There was widespread joint disease, with narrowing of joint spaces, whereas the knees demonstrated effusions and calcification. A skull X-ray revealed calvarial hyperostosis and a normal sellar outline. Family history was negative. Genetic studies were performed on peripheral blood leukocyte DNA for mutations in the two genes associated with PHOA, 15-hydroxyprostaglandin dehydrogenase (HPGD; OMIM: 601688) and solute carrier organic anion transporter family member 2A1 (SLCO2A1; OMIM: 601460). The sequence of HPGD was normal, whereas the subject was homozygous for a novel pathological variant in SLCO2A1, c.830delT, that predicted a frameshift and early protein truncation (p.Phe277Serfs*8). PHOA, also known as pachydermoperiostosis, is a rare entity caused by abnormal prostaglandin E2 metabolism, and both HPGD and SLCO2A1 are necessary for normal prostaglandin E2 handling. High prostaglandin levels lead to bone formation and resorption and connective tissue inflammation causing arthropathy, in addition to soft tissue swelling.

Learning points:

  • The differential diagnosis of enlarged extremities, coarsened facial features, skin changes and increased sweating in suspected acromegaly is quite limited and primary hypertrophic osteoarthropathy (PHOA) is one of the few conditions that can mimic acromegaly at presentation.

  • PHOA is not associated with abnormalities in GH and IGF-1 secretion and can be readily differentiated from acromegaly by hormonal testing.

  • Clubbing in the setting of diffuse enlargement of joints and extremities in addition to skin changes should alert the physician to the possibility of PHOA, as clubbing is not a usual feature of acromegaly. Underlying causes of secondary hypertrophic osteoarthroapthy (e.g. bronchial neoplasia) should be considered.

  • PHOA is a very rare condition caused by abnormalities in prostaglandin metabolism and has two known genetic causes (HPGD and SLCO2A1 mutations).

  • SLCO2A1 gene mutations lead usually to autosomal recessive PHOA; fewer than 50 SLCO2A1 mutations have been described to date and the current case is only the second in a Hispanic patient.

  • Treatment of primary hypertrophic osteoarthropathy is focused on the management of joint pain usually in the form of non-steroidal anti-inflammatory drug therapy.