Browse

You are looking at 1 - 3 of 3 items for :

  • Genetic analysis x
  • Mineralocorticoids x
Clear All
Open access

Teresa Rego, Fernando Fonseca, Stéphanie Espiard, Karine Perlemoine, Jérôme Bertherat and Ana Agapito

Summary

PBMAH is a rare etiology of Cushing syndrome (CS). Familial clustering suggested a genetic cause that was recently confirmed, after identification of inactivating germline mutations in armadillo repeat-containing 5 (ARMC5) gene. A 70-year-old female patient was admitted due to left femoral neck fracture in May 2014, in Orthopedics Department. During hospitalization, hypertension (HTA) and hypokalemia were diagnosed. She presented with clinical signs of hypercortisolism and was transferred to the Endocrinology ward for suspected CS. Laboratory workup revealed: ACTH <5 pg/mL; urinary free cortisol (UFC), 532 µg/24 h (normal range: 20–90); failure to suppress the low-dose dexamethasone test (0.5 mg every 6 h for 48 h): cortisol 21 µg/dL. Abdominal magnetic resonance imaging (MRI) showed enlarged nodular adrenals (right, 55 × 54 × 30 mm; left, 85 × 53 × 35 mm), and she was submitted to bilateral adrenalectomy. In 2006, this patient’s 39-year-old daughter had been treated by one of the authors. She presented with severe clinical and biological hypercortisolism. Computed tomography (CT) scan showed massively enlarged nodular adrenals with maximal axis of 15 cm for both. Bilateral adrenalectomy was performed. In this familial context of PBMAH, genetic study was performed. Leucocyte DNA genotyping identified in both patients the same germline heterozygous ARMC5 mutation in exon 1 c.172_173insA p.I58Nfs*45. The clinical cases herein described have an identical phenotype with severe hypercortisolism and huge adrenal glands, but different ages at the time of diagnosis. Current knowledge of inheritance of this disease, its insidious nature and the well-known deleterious effect of hypercortisolism favor genetic study to timely identify and treat these patients.

Learning points:

  • PBMAH is a rare etiology of CS, characterized by functioning adrenal macronodules and variable cortisol secretion.
  • The asymmetric/asynchronous involvement of only one adrenal gland can also occur, making disease diagnosis a challenge.
  • Familial clustering suggests a genetic cause that was recently confirmed, after identification of inactivating germline mutations in armadillo repeat-containing 5 (ARMC5) gene.
  • The insidious nature of this disease and the well-known deleterious effect of hypercortisolism favor genetic study of other family members, to diagnose and treat these patients timely.
  • As ARMC5 is expressed in many organs and recent findings suggest an association of PBMAH and meningioma, a watchful follow-up is required.
Open access

Anil Piya, Jasmeet Kaur, Alan M Rice and Himangshu S Bose

Summary

Cholesterol transport into the mitochondria is required for synthesis of the first steroid, pregnenolone. Cholesterol is transported by the steroidogenic acute regulatory protein (STAR), which acts at the outer mitochondrial membrane prior to its import. Mutations in the STAR protein result in lipoid congenital adrenal hyperplasia (CAH). Although the STAR protein consists of seven exons, biochemical analysis in nonsteroidogenic COS-1 cells showed that the first two were not essential for pregnenolone synthesis. Here, we present a patient with ambiguous genitalia, salt-lossing crisis within two weeks after birth and low cortisol levels. Sequence analysis of the STAR, including the exon–intron boundaries, showed the complete deletion of exon 1 as well as more than 50 nucleotides upstream of STAR promoter. Mitochondrial protein import with the translated protein through synthesis cassette of the mutant STAR lacking exon 1 showed protein translation, but it is less likely to have synthesized without a promoter in our patient. Thus, a full-length STAR gene is necessary for physiological mitochondrial cholesterol transport in vivo.

Learning points:

  • STAR exon 1 deletion caused lipoid CAH.
  • Exon 1 substitution does not affect biochemical activity.
  • StAR promoter is responsible for gonadal development.
Open access

Jasmeet Kaur, Alan M Rice, Elizabeth O’Connor, Anil Piya, Bradley Buckler and Himangshu S Bose

Congenital adrenal hyperplasia (CAH) is caused by mutations in cytochrome P450 side chain cleavage enzyme (CYP11A1 and old name, SCC). Errors in cholesterol side chain cleavage by the mitochondrial resident CYP11A1 results in an inadequate amount of pregnenolone production. This study was performed to evaluate the cause of salt-losing crisis and possible adrenal failure in a pediatric patient whose mother had a history of two previous stillbirths and loss of another baby within a week of birth. CAH can appear in any population in any region of the world. The study was conducted at Memorial University Medical Center and Mercer University School of Medicine. The patient was admitted to Pediatric Endocrinology Clinic due to salt-losing crisis and possible adrenal failure. The patient had CAH, an autosomal recessive disease, due to a novel mutation in exon 5 of the CYP11A1 gene, which generated a truncated protein of 286 amino acids compared with wild-type protein that has 521 amino acids (W286X). Although unrelated, both parents are carriers. Mitochondrial protein import analysis of the mutant CYP11A1 in steroidogenic MA-10 cells showed that the protein is imported in a similar fashion as observed for the wild-type protein and was cleaved to a shorter fragment. However, mutant’s activity was 10% of that obtained for the wild-type protein in non-steroidogenic COS-1 cells. In a patient of Mexican descent, a homozygous CYP11A1 mutation caused CAH, suggesting that this disease is not geographically restricted even in a homogeneous population.

Learning points:

  • Novel mutation in CYP11A1 causes CAH;
  • This is a pure population from Central Mexico;
  • Novel mutation created early truncated protein.