Browse

You are looking at 1 - 8 of 8 items for :

  • Hydrocortisone x
  • Genetic analysis x
Clear All
Open access

Syed Ali Imran, Khaled A Aldahmani, Lynette Penney, Sidney E Croul, David B Clarke, David M Collier, Donato Iacovazzo and Márta Korbonits

Summary

Early-onset acromegaly causing gigantism is often associated with aryl-hydrocarbon-interacting receptor protein (AIP) mutation, especially if there is a positive family history. A15y male presented with tiredness and visual problems. He was 201 cm tall with a span of 217 cm. He had typical facial features of acromegaly, elevated IGF-1, secondary hypogonadism and a large macroadenoma. His paternal aunt had a history of acromegaly presenting at the age of 35 years. Following transsphenoidal surgery, his IGF-1 normalized and clinical symptoms improved. He was found to have a novel AIP mutation destroying the stop codon c.991T>C; p.*331R. Unexpectedly, his father and paternal aunt were negative for this mutation while his mother and older sister were unaffected carriers, suggesting that his aunt represents a phenocopy.

Learning points:

  • Typical presentation for a patient with AIP mutation with excess growth and eunuchoid proportions.

  • Unusual, previously not described AIP variant with loss of the stop codon.

  • Phenocopy may occur in families with a disease-causing germline mutation.

Open access

Teresa Rego, Fernando Fonseca, Stéphanie Espiard, Karine Perlemoine, Jérôme Bertherat and Ana Agapito

Summary

PBMAH is a rare etiology of Cushing syndrome (CS). Familial clustering suggested a genetic cause that was recently confirmed, after identification of inactivating germline mutations in armadillo repeat-containing 5 (ARMC5) gene. A 70-year-old female patient was admitted due to left femoral neck fracture in May 2014, in Orthopedics Department. During hospitalization, hypertension (HTA) and hypokalemia were diagnosed. She presented with clinical signs of hypercortisolism and was transferred to the Endocrinology ward for suspected CS. Laboratory workup revealed: ACTH <5 pg/mL; urinary free cortisol (UFC), 532 µg/24 h (normal range: 20–90); failure to suppress the low-dose dexamethasone test (0.5 mg every 6 h for 48 h): cortisol 21 µg/dL. Abdominal magnetic resonance imaging (MRI) showed enlarged nodular adrenals (right, 55 × 54 × 30 mm; left, 85 × 53 × 35 mm), and she was submitted to bilateral adrenalectomy. In 2006, this patient’s 39-year-old daughter had been treated by one of the authors. She presented with severe clinical and biological hypercortisolism. Computed tomography (CT) scan showed massively enlarged nodular adrenals with maximal axis of 15 cm for both. Bilateral adrenalectomy was performed. In this familial context of PBMAH, genetic study was performed. Leucocyte DNA genotyping identified in both patients the same germline heterozygous ARMC5 mutation in exon 1 c.172_173insA p.I58Nfs*45. The clinical cases herein described have an identical phenotype with severe hypercortisolism and huge adrenal glands, but different ages at the time of diagnosis. Current knowledge of inheritance of this disease, its insidious nature and the well-known deleterious effect of hypercortisolism favor genetic study to timely identify and treat these patients.

Learning points:

  • PBMAH is a rare etiology of CS, characterized by functioning adrenal macronodules and variable cortisol secretion.

  • The asymmetric/asynchronous involvement of only one adrenal gland can also occur, making disease diagnosis a challenge.

  • Familial clustering suggests a genetic cause that was recently confirmed, after identification of inactivating germline mutations in armadillo repeat-containing 5 (ARMC5) gene.

  • The insidious nature of this disease and the well-known deleterious effect of hypercortisolism favor genetic study of other family members, to diagnose and treat these patients timely.

  • As ARMC5 is expressed in many organs and recent findings suggest an association of PBMAH and meningioma, a watchful follow-up is required.

Open access

Anil Piya, Jasmeet Kaur, Alan M Rice and Himangshu S Bose

Summary

Cholesterol transport into the mitochondria is required for synthesis of the first steroid, pregnenolone. Cholesterol is transported by the steroidogenic acute regulatory protein (STAR), which acts at the outer mitochondrial membrane prior to its import. Mutations in the STAR protein result in lipoid congenital adrenal hyperplasia (CAH). Although the STAR protein consists of seven exons, biochemical analysis in nonsteroidogenic COS-1 cells showed that the first two were not essential for pregnenolone synthesis. Here, we present a patient with ambiguous genitalia, salt-lossing crisis within two weeks after birth and low cortisol levels. Sequence analysis of the STAR, including the exon–intron boundaries, showed the complete deletion of exon 1 as well as more than 50 nucleotides upstream of STAR promoter. Mitochondrial protein import with the translated protein through synthesis cassette of the mutant STAR lacking exon 1 showed protein translation, but it is less likely to have synthesized without a promoter in our patient. Thus, a full-length STAR gene is necessary for physiological mitochondrial cholesterol transport in vivo.

Learning points:

  • STAR exon 1 deletion caused lipoid CAH.

  • Exon 1 substitution does not affect biochemical activity.

  • StAR promoter is responsible for gonadal development.

Open access

Jasmeet Kaur, Alan M Rice, Elizabeth O’Connor, Anil Piya, Bradley Buckler and Himangshu S Bose

Congenital adrenal hyperplasia (CAH) is caused by mutations in cytochrome P450 side chain cleavage enzyme (CYP11A1 and old name, SCC). Errors in cholesterol side chain cleavage by the mitochondrial resident CYP11A1 results in an inadequate amount of pregnenolone production. This study was performed to evaluate the cause of salt-losing crisis and possible adrenal failure in a pediatric patient whose mother had a history of two previous stillbirths and loss of another baby within a week of birth. CAH can appear in any population in any region of the world. The study was conducted at Memorial University Medical Center and Mercer University School of Medicine. The patient was admitted to Pediatric Endocrinology Clinic due to salt-losing crisis and possible adrenal failure. The patient had CAH, an autosomal recessive disease, due to a novel mutation in exon 5 of the CYP11A1 gene, which generated a truncated protein of 286 amino acids compared with wild-type protein that has 521 amino acids (W286X). Although unrelated, both parents are carriers. Mitochondrial protein import analysis of the mutant CYP11A1 in steroidogenic MA-10 cells showed that the protein is imported in a similar fashion as observed for the wild-type protein and was cleaved to a shorter fragment. However, mutant’s activity was 10% of that obtained for the wild-type protein in non-steroidogenic COS-1 cells. In a patient of Mexican descent, a homozygous CYP11A1 mutation caused CAH, suggesting that this disease is not geographically restricted even in a homogeneous population.

Learning points:

  • Novel mutation in CYP11A1 causes CAH;

  • This is a pure population from Central Mexico;

  • Novel mutation created early truncated protein.

Open access

Asma Deeb, Hana Al Suwaidi, Salima Attia and Ahlam Al Ameri

Summary

Combined17α-hydroxylase/17,20-lyase deficiency is a rare cause of congenital adrenal hyperplasia and hypogonadism. Hypertension and hypokalemia are essential presenting features. We report an Arab family with four affected XX siblings. The eldest presented with abdominal pain and was diagnosed with a retroperitoneal malignant mixed germ cell tumour. She was hypertensive and hypogonadal. One sibling presented with headache due to hypertension while the other two siblings were diagnosed with hypertension on a routine school check. A homozygous R96Q missense mutation in P450c17 was detected in the index case who had primary amenorrhea and lack of secondary sexual characters at 17 years. The middle two siblings were identical twins and had no secondary sexual characters at the age of 14. All siblings had hypokalemia, very low level of adrenal androgens, high ACTH and high levels of aldosterone substrates. Treatment was commenced with steroid replacement and puberty induction with estradiol. The index case had surgical tumor resection and chemotherapy. All siblings required antihypertensive treatment and the oldest remained on two antihypertensive medications 12 years after diagnosis. Her breast development remained poor despite adequate hormonal replacement. Combined 17α-hydroxylase/17,20-lyase deficiency is a rare condition but might be underdiagnosed. It should be considered in young patients presenting with hypertension, particularly if there is a family history of consanguinity and with more than one affected sibling. Antihypertensive medication might continue to be required despite adequate steroid replacement. Breast development may remain poor in mutations causing complete form of the disease.

Learning points

  • Endocrine hypertension due to rarer forms of CAH should be considered in children and adolescents, particularly if more than one sibling is affected and in the presence of consanguinity.

  • 17α-hydroxylase/17,20-lyase deficiency is a rare form of CAH but might be underdiagnosed.

  • Blood pressure measurement should be carried out in all females presenting with hypogonadism.

  • Anti-hypertensive medications might be required despite adequate steroid replacement.

  • Initial presenting features might vary within affected members of the same family.

  • Adverse breast development might be seen in the complete enzyme deficiency forms of the disease.

Open access

Avinash Suryawanshi, Timothy Middleton and Kirtan Ganda

Summary

X-linked adrenoleukodystrophy (X-ALD) is a rare genetic condition caused by mutations in the ABCD1 gene that result in accumulation of very long chain fatty acids (VLCFAs) in various tissues. This leads to demyelination in the CNS and impaired steroidogenesis in the adrenal cortex and testes. A 57-year-old gentleman was referred for the assessment of bilateral gynaecomastia of 6 months duration. He had skin hyperpigmentation since 4 years of age and spastic paraparesis for the past 15 years. Physical examination findings included generalised hyperpigmentation (including skin, buccal mucosa and palmar creases), blood pressure of 90/60 mmHg, non-tender gynaecomastia and bilateral hypoplastic testes. Lower limb findings were those of a profoundly ataxic gait associated with significant paraparesis and sensory loss. Primary adrenal insufficiency was confirmed and investigations for gynaecomastia revealed normal testosterone with mildly elevated luteinising hormone level and normal prolactin. The combination of primary adrenal insufficiency (likely childhood onset), partial testicular failure (leading to gynaecomastia) and spastic paraparesis suggested X-ALD as a unifying diagnosis. A serum VLCFA panel was consistent with X-ALD. Subsequent genetic testing confirmed the diagnosis. Treatment with replacement doses of corticosteroid resulted in improvement in blood pressure and increased energy levels. We have reported the case of a 57-year-old man with a very late diagnosis of X-ALD manifested by childhood onset of primary adrenal insufficiency followed by paraparesis and primary hypogonadism in adulthood. Thus, X-ALD should be considered as a possibility in a patient with non-autoimmune primary adrenal insufficiency and neurological abnormalities.

Learning points

  • Adult patients with X-ALD may be misdiagnosed as having multiple sclerosis or idiopathic spastic paraparesis for many years before the correct diagnosis is identified.

  • Screening for X-ALD with a VLCFA panel should be strongly considered in male children with primary adrenal insufficiency and in male adults presenting with non-autoimmune primary adrenal insufficiency.

  • Confirmation of a genetic diagnosis of X-ALD can be very useful for a patient's family as genetic testing enables detection of pre-symptomatic female heterozygotes who can then be offered pre-natal testing to avoid transmission of the disease to male offsprings.

Open access

Chrisanthi Marakaki, Anna Papadopoulou, Olga Karapanou, Dimitrios T Papadimitriou, Kleanthis Kleanthous and Anastasios Papadimitriou

Summary

11β-hydroxylase deficiency (11β-OHD), an autosomal recessive inherited disorder, accounts for 5–8% of congenital adrenal hyperplasia. In Greece, no cases of 11β-OHD have been described so far. The patient presented at the age of 13 months with mild virilization of external genitalia and pubic hair development since the age of 3 months. Hormonal profile showed elevated 11-deoxycortisol, adrenal androgens and ACTH levels. ACTH stimulation test was compatible with 11β-OHD. DNA of the proband and her parents was isolated and genotyped for CYP11B1 gene coding cytochrome P450c11. The girl was found to be compound heterozygous for two CYP11B1 novel mutations, p.Ala386Glu (exon 7), inherited from the father and p.Leu471Argin (exon 9) from the mother. Hydrocortisone supplementation therapy was initiated. Four years after presentation she remains normotensive, her growth pattern is normal and the bone age remains advanced despite adequate suppression of adrenal androgens.

Learning points

  • 11β-hydroxylase (CYP11B1) deficiency (11OHD; OMIM +202010) is the second most common cause of CAH accounting for approximately 5–8% of cases with an incidence of 1:100 000–1:200 000 live births in non-consanguineous populations.

  • Two CYP11B1 inactivating novel mutations, p.Ala386Glu and p.Leu471Arg are reported

  • Regarding newborn females, in utero androgen excess results in ambiguous genitalia, whereas in the male newborn diagnosis may go undetected. In infancy and childhood adrenal androgen overproduction results in peripheral precocious puberty in boys and various degrees of virilization in girls.

  • Accumulation of 11-deoxycorticosterone and its metabolites causes hypertension in about two thirds of patients.

  • Diagnosis lies upon elevated 11-deoxycortisol and DOC plus upstream precursors, such as 17α-hydroxyprogesterone and Δ4-androstenedione.

  • The established treatment of steroid 11β-OHD is similar to that of steroid 21-hydroxylase deficiency and consists of glucocorticoid administration in order to reduce ACTH-driven DOC overproduction resulting in hypertension remission and improvement of the virilization symptoms.

Open access

Hanna Remde, Elke Kaminsky, Mathias Werner and Marcus Quinkler

Summary

We report of a male patient aged 32 years who presented with primary hyperparathyroidism. Three parathyroid glands were resected. At the age of 46 years, nervus facialis irritation was noted, and an MRI scan incidentally revealed a non-functioning pituitary adenoma with affection of the chiasma opticum. The patient underwent transsphenoidal operation resulting in pituitary insufficiency postoperatively. At the same time, primary hyperparathyroidism reoccurred and a parathyroid adenoma located at the thymus was resected. The mother of the patient died early due to multiple tumors. The patient was suspected to have multiple endocrine neoplasia type 1 (MEN1) and genetic analysis was performed. In addition, on clinical examination, multiple exostoses were noticed and an additional genetic analysis was performed. His father was reported to have multiple osteochondromas too. MEN1 was diagnosed in the patient showing a novel heterozygote mutation c.2T>A in exon 2, codon 1 (start codon ATG>AAG;p.Met1?) of the MEN1 gene. In genetic mutational analysis of the EXT1 gene, another not yet known mutation c.1418-2A>C was found in intron 5 of the EXT1 gene (heterozygotic). In conclusion, we report novel mutations of the EXT1 and the MEN1 genes causing hereditary multiple osteochondromas and MEN1 in one patient.

Learning points

  • It is important to ask for the patient's family history in detail.

  • Patients with MEN1 are characterized by the occurrence of tumors in multiple endocrine tissues and nonendocrine tissues, most frequently parathyroid (95%), enteropancreatic neuroendocrine (50%), and anterior pituitary (40%) tissues.

  • Familiar MEN1 has a high degree of penetrance (80–95%) by the age over 50; however, combinations of the tumors may be different in members of the same family.

  • Patients with EXT1 gene mutations should be monitored for possible transformation of bone lesions into osteochondrosarcoma.