Browse

You are looking at 1 - 5 of 5 items for :

  • Hydrocortisone x
  • Aldosterone (blood) x
Clear All
Open access

Philip D Oddie, Benjamin B Albert, Paul L Hofman, Craig Jefferies, Stephen Laughton and Philippa J Carter

Summary

Adrenocortical carcinoma (ACC) during childhood is a rare malignant tumor that frequently results in glucocorticoid and/or androgen excess. When there are signs of microscopic or macroscopic residual disease, adjuvant therapy is recommended with mitotane, an adrenolytic and cytotoxic drug. In addition to the anticipated side effect of adrenal insufficiency, mitotane is known to cause gynecomastia and hypothyroidism in adults. It has never been reported to cause precocious puberty. A 4-year-old girl presented with a 6-week history of virilization and elevated androgen levels and 1-year advancement in bone age. Imaging revealed a right adrenal mass, which was subsequently surgically excised. Histology revealed ACC with multiple unfavorable features, including high mitotic index, capsular invasion and atypical mitoses. Adjuvant chemotherapy was started with mitotane, cisplatin, etoposide and doxorubicin. She experienced severe gastrointestinal side effects and symptomatic adrenal insufficiency, which occurred despite physiological-dose corticosteroid replacement. She also developed hypothyroidism that responded to treatment with levothyroxine and peripheral precocious puberty (PPP) with progressive breast development and rapidly advancing bone age. Five months after discontinuing mitotane, her adrenal insufficiency persisted and she developed secondary central precocious puberty (CPP). This case demonstrates the diverse endocrine complications associated with mitotane therapy, which contrast with the presentation of ACC itself. It also provides the first evidence that the known estrogenic effect of mitotane can manifest as PPP.

Learning points:

  • Adrenocortical carcinoma is an important differential diagnosis for virilization in young children

  • Mitotane is a chemotherapeutic agent that is used to treat adrenocortical carcinoma and causes adrenal necrosis

  • Mitotane is an endocrine disruptor. In addition to the intended effect of adrenal insufficiency, it can cause hypothyroidism, with gynecomastia also reported in adults.

  • Patients taking mitotane require very high doses of hydrocortisone replacement therapy because mitotane interferes with steroid metabolism. This effect persists after mitotane therapy is completed

  • In our case, mitotane caused peripheral precocious puberty, possibly through its estrogenic effect.

Open access

Lukas Burget, Laura Audí Parera, Monica Fernandez-Cancio, Rolf Gräni, Christoph Henzen and Christa E Flück

Summary

Steroidogenic acute regulatory protein (STAR) is a key protein for the intracellular transport of cholesterol to the mitochondrium in endocrine organs (e.g. adrenal gland, ovaries, testes) and essential for the synthesis of all steroid hormones. Several mutations have been described and the clinical phenotype varies strongly and may be grouped into classic lipoid congenital adrenal hyperplasia (LCAH), in which all steroidogenesis is disrupted, and non-classic LCAH, which resembles familial glucocorticoid deficiency (FGD), which affects predominantly adrenal functions. Classic LCAH is characterized by early and potentially life-threatening manifestation of primary adrenal insufficiency (PAI) with electrolyte disturbances and 46,XY disorder of sex development (DSD) in males as well as lack of pubertal development in both sexes. Non-classic LCAH manifests usually later in life with PAI. Nevertheless, life-long follow-up of gonadal function is warranted. We describe a 26-year-old female patient who was diagnosed with PAI early in life without detailed diagnostic work-up. At the age of 14 months, she presented with hyperpigmentation, elevated ACTH and low cortisol levels. As her older brother was diagnosed with PAI two years earlier, she was put on hydrocortisone and fludrocortisone replacement therapy before an Addisonian crisis occurred. Upon review of her case in adulthood, consanguinity was noted in the family. Genetic analysis for PAI revealed a homozygous mutation in the STAR gene (c.562C>T, p.Arg188Cys) in both siblings. This mutation has been previously described in non-classic LCAH. This case illustrates that early onset, familial PAI is likely due to autosomal recessive genetic mutations in known genes causing PAI.

Learning points:

  • In childhood-onset PAI, a genetic cause is most likely, especially in families with consanguinity.

  • Adult patients with an etiologically unsolved PAI should be reviewed repeatedly and genetic work-up should be considered.

  • Knowing the exact genetic diagnosis in PAI is essential for genetic counselling and may allow disease-specific treatment.

  • Young men and women with NCLAH due to homozygous STAR Arg188Cys mutation should be investigated for their gonadal function as hypogonadism and infertility might occur during puberty or in early adulthood.

Open access

Rémi Goupil, Martin Wolley, Jacobus Ungerer, Brett McWhinney, Kuniaki Mukai, Mitsuhide Naruse, Richard D Gordon and Michael Stowasser

Summary

In patients with primary aldosteronism (PA) undergoing adrenal venous sampling (AVS), cortisol levels are measured to assess lateralization of aldosterone overproduction. Concomitant adrenal autonomous cortisol and aldosterone secretion therefore have the potential to confound AVS results. We describe a case where metanephrine was measured during AVS to successfully circumvent this problem. A 55-year-old hypertensive male had raised plasma aldosterone/renin ratios and PA confirmed by fludrocortisone suppression testing. Failure of plasma cortisol to suppress overnight following dexamethasone and persistently suppressed corticotrophin were consistent with adrenal hypercortisolism. On AVS, comparison of adrenal and peripheral A/F ratios (left 5.7 vs peripheral 1.0; right 1.7 vs peripheral 1.1) suggested bilateral aldosterone production, with the left gland dominant but without contralateral suppression. However, using aldosterone/metanephrine ratios (left 9.7 vs peripheral 2.4; right 1.3 vs peripheral 2.5), aldosterone production lateralized to the left with good contralateral suppression. The patient underwent left laparoscopic adrenalectomy with peri-operative glucocorticoid supplementation to prevent adrenal insufficiency. Pathological examination revealed adrenal cortical adenomas producing both cortisol and aldosterone within a background of aldosterone-producing cell clusters. Hypertension improved and cured of PA and hypercortisolism were confirmed by negative post-operative fludrocortisone suppression and overnight 1 mg dexamethasone suppression testing. Routine dexamethasone suppression testing in patients with PA permits detection of concurrent hypercortisolism which can confound AVS results and cause unilateral PA to be misdiagnosed as bilateral with patients thereby denied potentially curative surgical treatment. In such patients, measurement of plasma metanephrine during AVS may overcome this issue.

Learning points

  • Simultaneous autonomous overproduction of cortisol and aldosterone is increasingly recognised although still apparently uncommon.

  • Because cortisol levels are used during AVS to correct for differences in dilution of adrenal with non-adrenal venous blood when assessing for lateralisation, unilateral cortisol overproduction with contralateral suppression could confound the interpretation of AVS results

  • Measuring plasma metanephrine during AVS to calculate lateralisation ratios may circumvent this problem.

Open access

Durgesh Gowda, Vasant Shenoy, Usman Malabu, Donald Cameron and Kunwarjit Sangla

Summary

Our patient had drainage of a large amoebic liver abscess. This got complicated by a severe degree of hypotension, which required aggressive fluid resuscitation and hydrocortisone support. Computerised tomography (CT) of the abdomen revealed bilateral adrenal gland haemorrhage (BAH) resulting in primary adrenal gland failure, which was the cause for hypotension. Patient was on long-term warfarin for provoked deep vein thrombosis of lower limb, which was discontinued before the procedure. Thrombophilia profile indicated the presence of lupus anticoagulant factor with prolonged activated partial thromboplastin time (aPTT). Patient was discharged on lifelong warfarin. This case emphasises the need for strong clinical suspicion for diagnosing BAH, rare but life-threatening condition, and its association with amoebic liver abscess and anti-phospholipid antibody syndrome (APLS).

Learning points

  • Recognition of BAH as a rare complication of sepsis.

  • APLS can rarely cause BAH.

Open access

Vivienne Yoon, Aliya Heyliger, Takashi Maekawa, Hironobu Sasano, Kelley Carrick, Stacey Woodruff, Jennifer Rabaglia, Richard J Auchus and Hans K Ghayee

Summary

Objective: To recognize that benign adrenal adenomas can co-secrete excess aldosterone and cortisol, which can change clinical management.

Methods: We reviewed the clinical and histological features of an adrenal tumor co-secreting aldosterone and cortisol in a patient. Biochemical testing as well as postoperative immunohistochemistry was carried out on tissue samples for assessing enzymes involved in steroidogenesis.

Results: A patient presented with hypertension, hypokalemia, and symptoms related to hypercortisolism. The case demonstrated suppressed renin concentrations with an elevated aldosterone:renin ratio, abnormal dexamethasone suppression test results, and elevated midnight salivary cortisol concentrations. The patient had a right adrenal nodule with autonomous cortisol production and interval growth. Right adrenalectomy was carried out. Postoperatively, the patient tolerated the surgery, but he was placed on a short course of steroid replacement given a subnormal postoperative serum cortisol concentration. Long-term follow-up of the patient showed that his blood pressure and glucose levels had improved. Histopathology slides showed positive staining for 3β-hydroxysteroid dehydrogenase, 11β-hydroxylase, and 21 hydroxylase.

Conclusion: In addition to the clinical manifestations and laboratory values, the presence of these enzymes in this type of tumor provides support that the tumor in this patient was able to produce mineralocorticoids and glucocorticoids. The recognition of patients with a tumor that is co-secreting aldosterone and cortisol can affect decisions to treat with glucocorticoids perioperatively to avoid adrenal crisis.

Learning points

  • Recognition of the presence of adrenal adenomas co-secreting mineralocorticoids and glucocorticoids.

  • Consideration for perioperative and postoperative glucocorticoid use in the treatment of co-secreting adrenal adenomas.