Clinical Overview > Hormone > Aldosterone

You are looking at 11 - 20 of 24 items

Judith Gerards Endocrinology in Charlottenburg

Search for other papers by Judith Gerards in
Google Scholar
PubMed
Close
,
Michael M Ritter Diabetology and Endocrinology, HELIOS Klinikum Berlin-Buch, Berlin, Germany

Search for other papers by Michael M Ritter in
Google Scholar
PubMed
Close
,
Elke Kaminsky Praxis für Humangenetik

Search for other papers by Elke Kaminsky in
Google Scholar
PubMed
Close
,
Andreas Gal Bioglobe GmbH, Hamburg, Germany

Search for other papers by Andreas Gal in
Google Scholar
PubMed
Close
,
Wolfgang Hoeppner Bioglobe GmbH, Hamburg, Germany

Search for other papers by Wolfgang Hoeppner in
Google Scholar
PubMed
Close
, and
Marcus Quinkler Endocrinology in Charlottenburg

Search for other papers by Marcus Quinkler in
Google Scholar
PubMed
Close

Summary

DAX1 (NR0B1) is an orphan nuclear receptor, which plays an important role in development and function of the adrenal glands and gonads. Mutations in DAX1 cause X-linked adrenal hypoplasia congenita (X-linked AHC), which is characterized by adrenal insufficiency (AI) and hypogonadotropic hypogonadism (HHG). Affected boys present with adrenal failure usually in childhood and, later in life, with delayed puberty. However, patients with a late-onset form of X-linked AHC have also been described in the past years. We report a male patient who presented with symptoms of an adrenal crisis at the age of 38 years and was later diagnosed with HHG. Family history was positive with several male relatives diagnosed with AI and compatible with the assumed X-chromosomal inheritance of the trait. Direct sequencing of DAX1 of the patient revealed a hemizygous cytosine-to-thymine substitution at nucleotide 64 in exon 1, which creates a novel nonsense mutation (p.(Gln22*)). In order to compare the clinical presentation of the patient to that of other patients with X-linked AHC, we searched the electronic database MEDLINE (PubMed) and found reports of nine other cases with delayed onset of X-linked AHC. In certain cases, genotype–phenotype correlation could be assumed.

Learning points:

  • X-linked AHC is a rare disease characterized by primary AI and hypogonadotropic hypogonadism (HHG). The full-blown clinical picture is seen usually only in males with a typical onset in childhood.

  • Patients with a late-onset form of X-linked AHC have also been described recently. Being aware of this late-onset form might help to reach an early diagnosis and prevent life-threatening adrenal crises.

  • Adult men with primary AI of unknown etiology should be investigated for HHG. Detecting a DAX1 mutation may confirm the clinical diagnosis of late-onset X-linked AHC.

  • In relatives of patients with genetically confirmed X-linked AHC, targeted mutation analysis may help to identify family members at risk and asymptomatic carriers, and discuss conscious family planning.

Open access
Harris Trainer Departments of Endocrinology

Search for other papers by Harris Trainer in
Google Scholar
PubMed
Close
,
Paul Hulse Departments of Radiology

Search for other papers by Paul Hulse in
Google Scholar
PubMed
Close
,
Claire E Higham Departments of Endocrinology

Search for other papers by Claire E Higham in
Google Scholar
PubMed
Close
,
Peter Trainer Departments of Endocrinology

Search for other papers by Peter Trainer in
Google Scholar
PubMed
Close
, and
Paul Lorigan Departments of Medical Oncology, The Christie NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK

Search for other papers by Paul Lorigan in
Google Scholar
PubMed
Close

Summary

Checkpoint inhibitors, such as ipilimumab and pembrolizumab, have transformed the prognosis for patients with advanced malignant melanoma and squamous non-small-cell lung cancer, and their use will only expand as experience is gained in a variety of other malignancies, for instance, renal and lymphoma. As the use of checkpoint inhibitors increases, so too will the incidence of their unique side effects, termed immune-related adverse events (irAEs), which can affect dermatological, gastrointestinal, hepatic, endocrine and other systems. Nivolumab is a monoclonal antibody that blocks the human programmed death receptor-1 ligand (PD-L1) found on many cancer cells and is licensed for the treatment of advanced malignant melanoma. We describe the first case of nivolumab-induced adrenalitis resulting in primary adrenal failure presenting with hyponatraemia in a 43-year-old man with malignant melanoma. The case highlights the potentially life-threatening complications of checkpoint inhibitors and the need for patient education and awareness of irAEs among the wider clinical community because such side effects require prompt recognition and treatment.

Learning points:

  • Nivolumab can cause primary adrenal insufficiency.

  • Not all cases of hyponatraemia in patients with malignancy are due to SIADH.

  • Any patient on a checkpoint inhibitor becoming unwell should have serum cortisol urgently measured and if in doubt hydrocortisone therapy should be initiated.

  • Although hyponatraemia can occur in patients with ACTH deficiency, the possibility of primary adrenal failure should also be considered and investigated by measurement of renin, aldosterone and ACTH.

  • Patients receiving checkpoint inhibitors require education on the potential risks of hypocortisolaemia.

  • PET imaging demonstrated bilateral increased activity consistent with an autoimmune adrenalitis.

Open access
Benjamin G Challis Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK

Search for other papers by Benjamin G Challis in
Google Scholar
PubMed
Close
,
Chung Thong Lim Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK

Search for other papers by Chung Thong Lim in
Google Scholar
PubMed
Close
,
Alison Cluroe Department of Histopathology, Cambridge University Hospitals Foundation Trust, Addenbrooke’s Hospital, Cambridge, UK

Search for other papers by Alison Cluroe in
Google Scholar
PubMed
Close
,
Ewen Cameron Department of Gastroenterology, Cambridge University Hospitals Foundation Trust, Addenbrooke’s Hospital, Cambridge, UK

Search for other papers by Ewen Cameron in
Google Scholar
PubMed
Close
, and
Stephen O’Rahilly Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK

Search for other papers by Stephen O’Rahilly in
Google Scholar
PubMed
Close

Summary

McKittrick–Wheelock syndrome (MWS) is a rare consequence of severe dehydration and electrolyte depletion due to mucinous diarrhoea secondary to a rectosigmoid villous adenoma. Reported cases of MWS commonly describe hypersecretion of mucinous diarrhoea in association with dehydration, hypokalaemia, hyponatraemia, hypochloraemia and pre-renal azotemia. Hyperglycaemia and diabetes are rarely reported manifestations of MWS. Herein we describe the case of a 59-year-old woman who presented with new-onset diabetes and severe electrolyte derangement due to a giant rectal villous adenoma. Subsequent endoscopic resection of the tumour cured her diabetes and normalised electrolytes. This case describes a rare cause of ‘curable diabetes’ and indicates hyperaldosteronism and/or whole-body potassium stores as important regulators of insulin secretion and glucose homeostasis.

Learning points

  • McKittrick–Wheelock syndrome (MWS) is typically characterised by the triad of pre-renal failure, electrolyte derangement and chronic diarrhoea resulting from a secretory colonic neoplasm.

  • Hyperglycaemia and new-onset diabetes are rare clinical manifestations of MWS.

  • Hyperaldosteronism and/or hypokalaemia may worsen glucose tolerance in MWS.

  • Aggressive replacement of fluid and electrolytes is the mainstay of acute management, with definitive treatment and complete reversal of the metabolic abnormalities being achieved by endoscopic or surgical resection of the neoplasm.

Open access
Yael R Nobel Department of Medicine, Columbia University Medical Center, New York, New York, 10032, USA

Search for other papers by Yael R Nobel in
Google Scholar
PubMed
Close
,
Maya B Lodish Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Maya B Lodish in
Google Scholar
PubMed
Close
,
Margarita Raygada Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Margarita Raygada in
Google Scholar
PubMed
Close
,
Jaydira Del Rivero Medical Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 12N-226, Bethesda, Maryland, 20892, USA

Search for other papers by Jaydira Del Rivero in
Google Scholar
PubMed
Close
,
Fabio R Faucz Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Fabio R Faucz in
Google Scholar
PubMed
Close
,
Smita B Abraham Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Smita B Abraham in
Google Scholar
PubMed
Close
,
Charalampos Lyssikatos Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Charalampos Lyssikatos in
Google Scholar
PubMed
Close
,
Elena Belyavskaya Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Elena Belyavskaya in
Google Scholar
PubMed
Close
,
Constantine A Stratakis Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Constantine A Stratakis in
Google Scholar
PubMed
Close
, and
Mihail Zilbermint Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA
Johns Hopkins University School of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baltimore, Maryland, 21287, USA
Suburban Hospital, Bethesda, Maryland, 20814, USA

Search for other papers by Mihail Zilbermint in
Google Scholar
PubMed
Close

Summary

Autosomal recessive pseudohypoaldosteronism type 1 (PHA1) is a rare disorder characterized by sodium wasting, failure to thrive, hyperkalemia, hypovolemia and metabolic acidosis. It is due to mutations in the amiloride-sensitive epithelial sodium channel (ENaC) and is characterized by diminished response to aldosterone. Patients may present with life-threatening hyperkalemia, which must be recognized and appropriately treated. A 32-year-old female was referred to the National Institutes of Health (NIH) for evaluation of hyperkalemia and muscle pain. Her condition started in the second week of life, when she was brought to an outside hospital lethargic and unresponsive. At that time, she was hypovolemic, hyperkalemic and acidotic, and was eventually treated with sodium bicarbonate and potassium chelation. At the time of the presentation to the NIH, her laboratory evaluation revealed serum potassium 5.1 mmol/l (reference range: 3.4–5.1 mmol/l), aldosterone 2800 ng/dl (reference range: ≤21 ng/dl) and plasma renin activity 90 ng/ml/h (reference range: 0.6–4.3 ng/ml per h). Diagnosis of PHA1 was suspected. Sequencing of the SCNN1B gene, which codes for ENaC, revealed that the patient is a compound heterozygote for two novel variants (c.1288delC and c.1466+1 G>A), confirming the suspected diagnosis of PHA1. In conclusion, we report a patient with novel variants of the SCNN1B gene causing PHA1 with persistent, symptomatic hyperkalemia.

Learning points

  • PHA1 is a rare genetic condition, causing functional abnormalities of the amiloride-sensitive ENaC.

  • PHA1 was caused by previously unreported SCNN1B gene mutations (c.1288delC and c.1466+1 G>A).

  • Early recognition of this condition and adherence to symptomatic therapy is important, as the electrolyte abnormalities found may lead to severe dehydration, cardiac arrhythmias and even death.

  • High doses of sodium polystyrene sulfonate, sodium chloride and sodium bicarbonate are required for symptomatic treatment.

Open access
Asma Deeb Paediatric Endocrinology Department, Mafraq Hospital, Abu Dhabi, UAE

Search for other papers by Asma Deeb in
Google Scholar
PubMed
Close
,
Hana Al Suwaidi Paediatric Endocrinology Department, Mafraq Hospital, Abu Dhabi, UAE

Search for other papers by Hana Al Suwaidi in
Google Scholar
PubMed
Close
,
Salima Attia Paediatric Endocrinology Department, Mafraq Hospital, Abu Dhabi, UAE

Search for other papers by Salima Attia in
Google Scholar
PubMed
Close
, and
Ahlam Al Ameri Paediatric Endocrinology Department, Mafraq Hospital, Abu Dhabi, UAE

Search for other papers by Ahlam Al Ameri in
Google Scholar
PubMed
Close

Summary

Combined17α-hydroxylase/17,20-lyase deficiency is a rare cause of congenital adrenal hyperplasia and hypogonadism. Hypertension and hypokalemia are essential presenting features. We report an Arab family with four affected XX siblings. The eldest presented with abdominal pain and was diagnosed with a retroperitoneal malignant mixed germ cell tumour. She was hypertensive and hypogonadal. One sibling presented with headache due to hypertension while the other two siblings were diagnosed with hypertension on a routine school check. A homozygous R96Q missense mutation in P450c17 was detected in the index case who had primary amenorrhea and lack of secondary sexual characters at 17 years. The middle two siblings were identical twins and had no secondary sexual characters at the age of 14. All siblings had hypokalemia, very low level of adrenal androgens, high ACTH and high levels of aldosterone substrates. Treatment was commenced with steroid replacement and puberty induction with estradiol. The index case had surgical tumor resection and chemotherapy. All siblings required antihypertensive treatment and the oldest remained on two antihypertensive medications 12 years after diagnosis. Her breast development remained poor despite adequate hormonal replacement. Combined 17α-hydroxylase/17,20-lyase deficiency is a rare condition but might be underdiagnosed. It should be considered in young patients presenting with hypertension, particularly if there is a family history of consanguinity and with more than one affected sibling. Antihypertensive medication might continue to be required despite adequate steroid replacement. Breast development may remain poor in mutations causing complete form of the disease.

Learning points

  • Endocrine hypertension due to rarer forms of CAH should be considered in children and adolescents, particularly if more than one sibling is affected and in the presence of consanguinity.

  • 17α-hydroxylase/17,20-lyase deficiency is a rare form of CAH but might be underdiagnosed.

  • Blood pressure measurement should be carried out in all females presenting with hypogonadism.

  • Anti-hypertensive medications might be required despite adequate steroid replacement.

  • Initial presenting features might vary within affected members of the same family.

  • Adverse breast development might be seen in the complete enzyme deficiency forms of the disease.

Open access
Avinash Suryawanshi Department of Endocrinology and Metabolism, Concord Repatriation General Hospital, Concord, New South Wales, 2139, Australia
Concord Clinical School, The University of Sydney, Sydney, New South Wales, 2139, Australia

Search for other papers by Avinash Suryawanshi in
Google Scholar
PubMed
Close
,
Timothy Middleton Department of Endocrinology and Metabolism, Concord Repatriation General Hospital, Concord, New South Wales, 2139, Australia
Concord Clinical School, The University of Sydney, Sydney, New South Wales, 2139, Australia

Search for other papers by Timothy Middleton in
Google Scholar
PubMed
Close
, and
Kirtan Ganda Department of Endocrinology and Metabolism, Concord Repatriation General Hospital, Concord, New South Wales, 2139, Australia
Concord Clinical School, The University of Sydney, Sydney, New South Wales, 2139, Australia

Search for other papers by Kirtan Ganda in
Google Scholar
PubMed
Close

Summary

X-linked adrenoleukodystrophy (X-ALD) is a rare genetic condition caused by mutations in the ABCD1 gene that result in accumulation of very long chain fatty acids (VLCFAs) in various tissues. This leads to demyelination in the CNS and impaired steroidogenesis in the adrenal cortex and testes. A 57-year-old gentleman was referred for the assessment of bilateral gynaecomastia of 6 months duration. He had skin hyperpigmentation since 4 years of age and spastic paraparesis for the past 15 years. Physical examination findings included generalised hyperpigmentation (including skin, buccal mucosa and palmar creases), blood pressure of 90/60 mmHg, non-tender gynaecomastia and bilateral hypoplastic testes. Lower limb findings were those of a profoundly ataxic gait associated with significant paraparesis and sensory loss. Primary adrenal insufficiency was confirmed and investigations for gynaecomastia revealed normal testosterone with mildly elevated luteinising hormone level and normal prolactin. The combination of primary adrenal insufficiency (likely childhood onset), partial testicular failure (leading to gynaecomastia) and spastic paraparesis suggested X-ALD as a unifying diagnosis. A serum VLCFA panel was consistent with X-ALD. Subsequent genetic testing confirmed the diagnosis. Treatment with replacement doses of corticosteroid resulted in improvement in blood pressure and increased energy levels. We have reported the case of a 57-year-old man with a very late diagnosis of X-ALD manifested by childhood onset of primary adrenal insufficiency followed by paraparesis and primary hypogonadism in adulthood. Thus, X-ALD should be considered as a possibility in a patient with non-autoimmune primary adrenal insufficiency and neurological abnormalities.

Learning points

  • Adult patients with X-ALD may be misdiagnosed as having multiple sclerosis or idiopathic spastic paraparesis for many years before the correct diagnosis is identified.

  • Screening for X-ALD with a VLCFA panel should be strongly considered in male children with primary adrenal insufficiency and in male adults presenting with non-autoimmune primary adrenal insufficiency.

  • Confirmation of a genetic diagnosis of X-ALD can be very useful for a patient's family as genetic testing enables detection of pre-symptomatic female heterozygotes who can then be offered pre-natal testing to avoid transmission of the disease to male offsprings.

Open access
Rémi Goupil Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Ipswich Road, Woolloongabba, Brisbane, Queensland, 4102, Australia
Hôpital du Sacré-Coeur de Montréal, University of Montreal, Montreal, Quebec, H4J 1C5, Canada

Search for other papers by Rémi Goupil in
Google Scholar
PubMed
Close
,
Martin Wolley Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Ipswich Road, Woolloongabba, Brisbane, Queensland, 4102, Australia

Search for other papers by Martin Wolley in
Google Scholar
PubMed
Close
,
Jacobus Ungerer Department of Chemical Pathology, Pathology Queensland, Brisbane, Queensland, 4001, Australia

Search for other papers by Jacobus Ungerer in
Google Scholar
PubMed
Close
,
Brett McWhinney Department of Chemical Pathology, Pathology Queensland, Brisbane, Queensland, 4001, Australia

Search for other papers by Brett McWhinney in
Google Scholar
PubMed
Close
,
Kuniaki Mukai Department of Biochemistry, Medical Education Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan

Search for other papers by Kuniaki Mukai in
Google Scholar
PubMed
Close
,
Mitsuhide Naruse Department of Endocrinology, Metabolism and Hypertension, National Hospital Organization Kyoto Medical Center, Kyoto, Japan

Search for other papers by Mitsuhide Naruse in
Google Scholar
PubMed
Close
,
Richard D Gordon Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Ipswich Road, Woolloongabba, Brisbane, Queensland, 4102, Australia

Search for other papers by Richard D Gordon in
Google Scholar
PubMed
Close
, and
Michael Stowasser Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Ipswich Road, Woolloongabba, Brisbane, Queensland, 4102, Australia

Search for other papers by Michael Stowasser in
Google Scholar
PubMed
Close

Summary

In patients with primary aldosteronism (PA) undergoing adrenal venous sampling (AVS), cortisol levels are measured to assess lateralization of aldosterone overproduction. Concomitant adrenal autonomous cortisol and aldosterone secretion therefore have the potential to confound AVS results. We describe a case where metanephrine was measured during AVS to successfully circumvent this problem. A 55-year-old hypertensive male had raised plasma aldosterone/renin ratios and PA confirmed by fludrocortisone suppression testing. Failure of plasma cortisol to suppress overnight following dexamethasone and persistently suppressed corticotrophin were consistent with adrenal hypercortisolism. On AVS, comparison of adrenal and peripheral A/F ratios (left 5.7 vs peripheral 1.0; right 1.7 vs peripheral 1.1) suggested bilateral aldosterone production, with the left gland dominant but without contralateral suppression. However, using aldosterone/metanephrine ratios (left 9.7 vs peripheral 2.4; right 1.3 vs peripheral 2.5), aldosterone production lateralized to the left with good contralateral suppression. The patient underwent left laparoscopic adrenalectomy with peri-operative glucocorticoid supplementation to prevent adrenal insufficiency. Pathological examination revealed adrenal cortical adenomas producing both cortisol and aldosterone within a background of aldosterone-producing cell clusters. Hypertension improved and cured of PA and hypercortisolism were confirmed by negative post-operative fludrocortisone suppression and overnight 1 mg dexamethasone suppression testing. Routine dexamethasone suppression testing in patients with PA permits detection of concurrent hypercortisolism which can confound AVS results and cause unilateral PA to be misdiagnosed as bilateral with patients thereby denied potentially curative surgical treatment. In such patients, measurement of plasma metanephrine during AVS may overcome this issue.

Learning points

  • Simultaneous autonomous overproduction of cortisol and aldosterone is increasingly recognised although still apparently uncommon.

  • Because cortisol levels are used during AVS to correct for differences in dilution of adrenal with non-adrenal venous blood when assessing for lateralisation, unilateral cortisol overproduction with contralateral suppression could confound the interpretation of AVS results

  • Measuring plasma metanephrine during AVS to calculate lateralisation ratios may circumvent this problem.

Open access
V Larouche Resident, Internal Medicine Residency Training Program, Department of Medicine, McGill University, Montreal, Quebec, Canada

Search for other papers by V Larouche in
Google Scholar
PubMed
Close
,
L Snell Division of General Internal Medicine, McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada

Search for other papers by L Snell in
Google Scholar
PubMed
Close
, and
D V Morris Division of Endocrinology, McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada

Search for other papers by D V Morris in
Google Scholar
PubMed
Close

Summary

Myxoedema madness was first described as a consequence of severe hypothyroidism in 1949. Most cases were secondary to long-standing untreated primary hypothyroidism. We present the first reported case of iatrogenic myxoedema madness following radioactive iodine ablation for Graves' disease, with a second concurrent diagnosis of primary hyperaldosteronism. A 29-year-old woman presented with severe hypothyroidism, a 1-week history of psychotic behaviour and paranoid delusions 3 months after treatment with radioactive iodine ablation for Graves' disease. Her psychiatric symptoms abated with levothyroxine replacement. She was concurrently found to be hypertensive and hypokalemic. Primary hyperaldosteronism from bilateral adrenal hyperplasia was diagnosed. This case report serves as a reminder that myxoedema madness can be a complication of acute hypothyroidism following radioactive iodine ablation of Graves' disease and that primary hyperaldosteronism may be associated with autoimmune hyperthyroidism.

Learning points

  • Psychosis (myxoedema madness) can present as a neuropsychiatric manifestation of acute hypothyroidism following radioactive iodine ablation of Graves' disease.

  • Primary hyperaldosteronism may be caused by idiopathic bilateral adrenal hyperplasia even in the presence of an adrenal adenoma seen on imaging.

  • Adrenal vein sampling is a useful tool for differentiating between a unilateral aldosterone-producing adenoma, which is managed surgically, and an idiopathic bilateral adrenal hyperplasia, which is managed medically.

  • The management of autoimmune hyperthyroidism, iatrogenic hypothyroidism and primary hyperaldosteronism from bilateral idiopathic adrenal hyperplasia in patients planning pregnancy includes delaying pregnancy 6 months following radioactive iodine treatment and until patient is euthyroid for 3 months, using amiloride as opposed to spironolactone, controlling blood pressure with agents safe in pregnancy such as nifedipine and avoiding β blockers.

  • Autoimmune hyperthyroidism and primary hyperaldosteronism rarely coexist; any underlying mechanism associating the two is still unclear.

Open access
Gautam Das Department of Diabetes and Endocrinology, Prince Charles Hospital, Cwm Taf University Health Board, Merthyr Tydfil, Mid Glamorgan, CF47 9DT, UK

Search for other papers by Gautam Das in
Google Scholar
PubMed
Close
,
Peter N Taylor Department of Diabetes and Endocrinology, Prince Charles Hospital, Cwm Taf University Health Board, Merthyr Tydfil, Mid Glamorgan, CF47 9DT, UK

Search for other papers by Peter N Taylor in
Google Scholar
PubMed
Close
,
Arshiya Tabasum Department of Diabetes and Endocrinology, Prince Charles Hospital, Cwm Taf University Health Board, Merthyr Tydfil, Mid Glamorgan, CF47 9DT, UK

Search for other papers by Arshiya Tabasum in
Google Scholar
PubMed
Close
,
L N Rao Bondugulapati Department of Diabetes and Endocrinology, Maelor Hospital, Betsi Cadwaldr University Health Board, Wrexham, LL13 7TD, UK

Search for other papers by L N Rao Bondugulapati in
Google Scholar
PubMed
Close
,
Danny Parker Department of Histopathology, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, CF14 4XW, UK

Search for other papers by Danny Parker in
Google Scholar
PubMed
Close
,
Piero Baglioni Department of Diabetes and Endocrinology, Prince Charles Hospital, Cwm Taf University Health Board, Merthyr Tydfil, Mid Glamorgan, CF47 9DT, UK

Search for other papers by Piero Baglioni in
Google Scholar
PubMed
Close
,
Onyebuchi E Okosieme Department of Diabetes and Endocrinology, Prince Charles Hospital, Cwm Taf University Health Board, Merthyr Tydfil, Mid Glamorgan, CF47 9DT, UK

Search for other papers by Onyebuchi E Okosieme in
Google Scholar
PubMed
Close
, and
David Scott Coombes Department of Endocrine Surgery, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, CF14 4XW, UK

Search for other papers by David Scott Coombes in
Google Scholar
PubMed
Close

Summary

Resistant hypertension is often difficult to treat and may be associated with underlying primary aldosteronism (PA). We describe the case of an elderly gentleman who presented with severe and resistant hypertension and was found to have a left adrenal incidentaloma during evaluation but had aldosterone excess secondary to unilateral adrenal hyperplasia (UAH) of the contralateral gland, which needed surgical intervention. A 65-year-old gentleman was evaluated for uncontrolled high blood pressure (BP) in spite of taking four antihypertensive medications. The high BP was confirmed on a 24-h ambulatory reading, and further biochemical evaluation showed an elevated serum aldosterone renin ratio (ARR) (1577 pmol/l per ng per ml per h). Radiological evaluation showed an adrenal nodule (15 mm) in the left adrenal gland but an adrenal vein sampling demonstrated a lateralization towards the opposite site favouring the right adrenal to be the source of excess aldosterone. A laparoscopic right adrenalectomy was performed and the histology of the gland confirmed nodular hyperplasia. Following surgery, the patient's BP improved remarkably although he remained on antihypertensives and under regular endocrine follow-up. PA remains the most common form of secondary and difficult-to-treat hypertension. Investigations may reveal incidental adrenal lesions, which may not be the actual source of excess aldosterone, but UAH may be a contributor and may coexist and amenable to surgical treatment. An adrenal vein sampling should be undertaken for correct lateralization of the source, otherwise a correctable diagnosis may be missed and the incorrect adrenal gland may be removed.

Learning points

  • Severe and resistant hypertension can often be associated with underlying PA.

  • ARR is an excellent screening tool in patients with suspected PA.

  • Lateralization with adrenal venous sampling is essential to isolate the source and differentiate between unilateral and bilateral causes of hyperaldosteronism.

  • Adrenal incidentalomas and UAH may coexist and the latter may often be the sole cause of excess aldosterone secretion.

  • Decisions about adrenalectomy should be made only after integrating and interpreting radiological and biochemical test findings properly.

Open access
S Hussain Department of Endocrinology, St Bartholomew's Hospital, London, UK

Search for other papers by S Hussain in
Google Scholar
PubMed
Close
,
E Panteliou Department of Endocrinology, St Bartholomew's Hospital, London, UK

Search for other papers by E Panteliou in
Google Scholar
PubMed
Close
,
D M Berney Department of Pathology, St Bartholomew's Hospital, London, UK

Search for other papers by D M Berney in
Google Scholar
PubMed
Close
,
R Carpenter Department of Surgery, St Bartholomew's Hospital, London, UK

Search for other papers by R Carpenter in
Google Scholar
PubMed
Close
,
M Matson Department of Radiology, St Bartholomew's Hospital, London, UK

Search for other papers by M Matson in
Google Scholar
PubMed
Close
,
A Sahdev Department of Radiology, St Bartholomew's Hospital, London, UK

Search for other papers by A Sahdev in
Google Scholar
PubMed
Close
,
M Bell Department of Endocrinology, Galway University Hospital, Galway, UK

Search for other papers by M Bell in
Google Scholar
PubMed
Close
,
E O'Sullivan Department of Endocrinology, Galway University Hospital, Galway, UK

Search for other papers by E O'Sullivan in
Google Scholar
PubMed
Close
, and
W M Drake Department of Endocrinology, St Bartholomew's Hospital, London, UK

Search for other papers by W M Drake in
Google Scholar
PubMed
Close

Summary

We describe a young male patient with longstanding hypertension, who was diagnosed with primary hyperaldosteronism and treated by an attempted retroperitoneoscopic total unilateral adrenalectomy for a left-sided presumed aldosterone-secreting adenoma. Imaging had shown an unremarkable focal adrenal lesion with normal contralateral adrenal morphology, and histology of the resected specimen showed no adverse features. Post-operatively, his blood pressure and serum aldosterone levels fell to the normal range, but 9 months later, his hypertension recurred, primary aldosteronism was again confirmed and he was referred to our centre. Repeat imaging demonstrated an irregular left-sided adrenal lesion with normal contralateral gland appearances. Adrenal venous sampling was performed, which supported unilateral (left-sided) aldosterone hypersecretion. Redo surgery via a laparoscopically assisted transperitoneal approach was performed and multiple nodules were noted extending into the retroperitoneum. It was thought unlikely that complete resection had been achieved. His blood pressure returned to normal post-operatively, although hypokalaemia persisted. Histological examination, from this second operation, showed features of an adrenocortical carcinoma (ACC; including increased mitoses and invasion of fat) that was assessed as malignant using the scoring systems of Weiss and Aubert. Biochemical hyperaldosteronism persisted post-operatively, and detailed urine steroid profiling showed no evidence of adrenal steroid precursors or other mineralocorticoid production. He received flank radiotherapy to the left adrenal bed and continues to receive adjunctive mitotane therapy for a diagnosis of a pure aldosterone-secreting ACC.

Learning points

  • Pure aldosterone-secreting ACCs are exceptionally uncommon, but should be considered in the differential diagnosis of patients presenting with primary aldosteronism.

  • Aldosterone-producing ACCs may not necessarily show typical radiological features consistent with malignancy.

  • Patients who undergo surgical treatment for primary aldosteronism should have follow-up measurements of blood pressure to monitor for disease recurrence, even if post-operative normotension is thought to indicate a surgical ‘cure’.

  • Owing to the rarity of such conditions, a greater understanding of their natural history is likely to come from wider cooperation with, and contribution to, large multi-centre outcomes databases.

Open access