Clinical Overview > Hormone > Progesterone
You are looking at 1 - 10 of 10 items
General Surgery, Mount Druitt Hospital, Mount Druitt, New South Wales, Australia
Search for other papers by Pratima Herle in
Google Scholar
PubMed
Search for other papers by Steven Boyages in
Google Scholar
PubMed
Search for other papers by Rina Hui in
Google Scholar
PubMed
Search for other papers by Najmun Nahar in
Google Scholar
PubMed
Search for other papers by Nicholas K Ngui in
Google Scholar
PubMed
Summary
In most developed countries, breast carcinoma is the most common malignancy in women and while thyroid cancer is less common, its incidence is almost three to five times greater in women than in men. Since 1966, studies have demonstrated an association between thyroid and breast cancer and despite these studies, the mechanism/s by which they are related, remains unclear. We present a case of a 56-year-old lady who initially presented in 2014 with a screen detected left breast carcinoma but was subsequently found to have occult metastatic thyroid cancer to the axilla, diagnosed from a sentinel node biopsy from the primary breast procedure. The patient underwent a left mastectomy, left axillary dissection and total thyroidectomy followed by three courses of radioactive iodine ablation. Despite this, her thyroglobulin level continued to increase, which was secondary to a metastatic thyroid cancer parasternal metastasis. Breast and thyroid cancer presents metachronously or synchronously more often than by chance. With improving mortality in primary cancers, such as breast and differentiated thyroid cancer, it is likely that as clinicians, we will continue to encounter this association in practice.
Learning points:
-
There has been a long-standing observation of an association between breast and thyroid cancer although the exact mechanism of this association remains unclear.
-
Our patient presented with thyroid cancer with an incidental diagnosis from a sentinel node biopsy during her primary breast operation for breast cancer and was also found to have a parasternal distant bony metastasis.
-
Thyroid axillary metastases are generally rare.
-
The interesting nature in which this patient’s metastatic thyroid carcinoma behaved more like a breast carcinoma highlights a correlation between these two cancers.
-
With improving mortality in these primary cancers, clinicians are likely to encounter this association in clinical practice.
-
Systemic therapy for metastatic breast and thyroid cancers differ and therefore a clear diagnosis of metastasis is crucial.
Search for other papers by Yotsapon Thewjitcharoen in
Google Scholar
PubMed
Search for other papers by Veekij Veerasomboonsin in
Google Scholar
PubMed
Search for other papers by Soontaree Nakasatien in
Google Scholar
PubMed
Search for other papers by Sirinate Krittiyawong in
Google Scholar
PubMed
Search for other papers by Thep Himathongkam in
Google Scholar
PubMed
Summary
Primary amenorrhea could be caused by disorders of four parts: disorders of the outflow tract, disorders of the ovary, disorders of the anterior pituitary, and disorders of hypothalamus. Delay in diagnosis and hormone substitution therapy causes secondary osteoporosis. Herein, we report a case of a 23-year-old phenotypical female who presented with primary amenorrhea from 46, XX gonadal dysgenesis but had been misdiagnosed as Mayer–Rokitansky–Kuster–Hauser (MRKH) syndrome or Mullerian agenesis. The coexistence of gonadal dysgenesis and MRKH was suspected after laboratory and imaging investigations. However, the vanishing uterus reappeared after 18 months of hormone replacement therapy. Therefore, hormone profiles and karyotype should be thoroughly investigated to distinguish MRKH syndrome from other disorders of sex development (DSD). Double diagnosis of DSD is extremely rare and periodic evaluation should be reassessed. This case highlights the presence of estrogen deficiency state, the uterus may remain invisible until adequate exposure to exogenous estrogen.
Learning points:
-
An early diagnosis of disorders of sex development (DSD) is extremely important in order to promptly begin treatment, provide emotional support to the patient and reduce the risks of associated complications.
-
Hormone profiles and karyotype should be investigated in all cases of the presumptive diagnosis of Mayer–Rokitansky–Kuster–Hauser (MRKH) syndrome or Mullerian agenesis.
-
The association between 46, XX gonadal dysgenesis and Mullerian agenesis has been occasionally reported as a co-incidental event; however, reassessment of the presence of uterus should be done again after administration of exogenous estrogen replacement for at least 6–12 months.
-
A multidisciplinary approach is necessary for patients presenting with DSD to ensure appropriate treatments and follow-up across the lifespan of individuals with DSD.
Memorial University Medical Center, Savannah, Georgia, USA
Search for other papers by Himangshu S Bose in
Google Scholar
PubMed
Pediatric Endocrinology and Diabetes Center, Kalispell Regional Medical Center, Kalispell, Montana, USA
Search for other papers by Alan M Rice in
Google Scholar
PubMed
Search for other papers by Brendan Marshall in
Google Scholar
PubMed
Laboratory of Pathology, Memorial University Medical Center, Savannah, Georgia, USA
Search for other papers by Fadi Gebrail in
Google Scholar
PubMed
Search for other papers by David Kupshik in
Google Scholar
PubMed
Search for other papers by Elizabeth W Perry in
Google Scholar
PubMed
Summary
Steroid hormones are essential for the survival of all mammals. In adrenal glands and gonads, cytochrome P450 side chain cleavage enzyme (SCC or CYP11A1), catalyzes conversion of cholesterol to pregnenolone. We studied a patient with ambiguous genitalia by the absence of Müllerian ducts and the presence of an incompletely formed vagina, who had extremely high adrenocorticotropic hormone (ACTH) and reduced pregnenolone levels with enlarged adrenal glands. The testes revealed seminiferous tubules, stroma, rete testis with interstitial fibrosis and reduced number of germ cells. Electron microscopy showed that the patient’s testicular mitochondrial size was small with little SCC expression within the mitochondria. The mitochondria were not close to the mitochondria-associated ER membrane (MAM), and cells were filled with the microfilaments. Our result revealed that absence of pregnenolone is associated with organelle stress, leading to altered protein organization that likely created steric hindrance in testicular cells.
Learning points:
-
Testes revealed seminiferous tubules, stroma, rete testis with interstitial fibrosis and reduced number of germ cells;
-
Testicular mitochondrial size was small with little SCC expression within the mitochondria;
-
Absence of pregnenolone is associated with organelle stress.
Search for other papers by S Vimalesvaran in
Google Scholar
PubMed
Search for other papers by S Narayanaswamy in
Google Scholar
PubMed
Search for other papers by L Yang in
Google Scholar
PubMed
Search for other papers by J K Prague in
Google Scholar
PubMed
Search for other papers by A Buckley in
Google Scholar
PubMed
Search for other papers by A D Miras in
Google Scholar
PubMed
Search for other papers by S Franks in
Google Scholar
PubMed
Search for other papers by K Meeran in
Google Scholar
PubMed
Search for other papers by W S Dhillo in
Google Scholar
PubMed
Summary
Primary amenorrhoea is defined as the failure to commence menstruation by the age of 15 years, in the presence of normal secondary sexual development. The potential causes of primary amenorrhoea extend from structural to chromosomal abnormalities. Polycystic ovarian syndrome (PCOS) is a common cause of secondary amenorrhoea but an uncommon cause of primary amenorrhoea. An early and prompt diagnosis of PCOS is important, as up to 30% of these women are predisposed to glucose intolerance and obesity, with the subgroup of women presenting with primary amenorrhoea and PCOS displaying a higher incidence of metabolic dysfunction. We describe a case of an 18-year-old female presenting with primary amenorrhoea of unknown aetiology. Although initial investigations did not demonstrate clinical or biochemical hyperandrogenism or any radiological evidence of polycystic ovaries, a raised luteinising hormone (LH) suggested a diagnosis of PCOS. If PCOS was the correct diagnosis, then one would expect intact hypothalamic GnRH and pituitary gonadotropin release. We used the novel hormone kisspeptin to confirm intact hypothalamic GnRH release and a GnRH stimulation test to confirm intact pituitary gonadotroph function. This case highlights that kisspeptin is a potential unique tool to test GnRH function in patients presenting with reproductive disorders.
Learning points:
-
Polycystic ovarian syndrome (PCOS) can present with primary amenorrhoea, and therefore, should be considered in the differential diagnosis.
-
PCOS is a heterogeneous condition that may present in lean women with few or absent signs of hyperandrogenism.
-
GnRH stimulation tests are useful in evaluating pituitary function; however, to date, we do not have a viable test of GnRH function. Kisspeptin has the potential to form a novel diagnostic tool for assessing hypothalamic GnRH function by monitoring gonadotropin response as a surrogate marker of GnRH release.
-
Confirmation of intact GnRH function helps consolidate a diagnosis in primary amenorrhoea and gives an indication of future fertility.
Search for other papers by T O’Shea in
Google Scholar
PubMed
Search for other papers by R K Crowley in
Google Scholar
PubMed
Search for other papers by M Farrell in
Google Scholar
PubMed
Search for other papers by S MacNally in
Google Scholar
PubMed
Search for other papers by P Govender in
Google Scholar
PubMed
Search for other papers by J Feeney in
Google Scholar
PubMed
Search for other papers by J Gibney in
Google Scholar
PubMed
Search for other papers by M Sherlock in
Google Scholar
PubMed
Summary
Meningioma growth has been previously described in patients receiving oestrogen/progestogen therapy. We describe the clinical, radiological, biochemical and pathologic findings in a 45-year-old woman with congenital adrenal hyperplasia secondary to a defect in the 21-hydroxylase enzyme who had chronic poor adherence to glucocorticoid therapy with consequent virilisation. The patient presented with a frontal headache and marked right-sided proptosis. Laboratory findings demonstrated androgen excess with a testosterone of 18.1 nmol/L (0–1.5 nmol) and 17-Hydroxyprogesterone >180 nmol/L (<6.5 nmol/L). CT abdomen was performed as the patient complained of rapid-onset increasing abdominal girth and revealed bilateral large adrenal myelolipomata. MRI brain revealed a large meningioma involving the right sphenoid wing with anterior displacement of the right eye and associated bony destruction. Surgical debulking of the meningioma was performed and histology demonstrated a meningioma, which stained positive for the progesterone receptor. Growth of meningioma has been described in postmenopausal women receiving hormone replacement therapy, in women receiving contraceptive therapy and in transsexual patients undergoing therapy with high-dose oestrogen and progestogens. Progesterone receptor positivity has been described previously in meningiomas. 17-Hydroxyprogesterone is elevated in CAH and has affinity and biological activity at the progesterone receptor. Therefore, we hypothesise that patients who have long-standing increased adrenal androgen precursor concentrations may be at risk of meningioma growth.
Learning points:
-
Patients with long-standing CAH (particularly if not optimally controlled) may present with other complications, which may be related to long-standing elevated androgen or decreased glucocorticoid levels.
-
Chronic poor control of CAH is associated with adrenal myelolipoma and adrenal rest tissue tumours.
-
Meningiomas are sensitive to endocrine stimuli including progesterone, oestrogen and androgens as they express the relevant receptors.
Anderson Cancer Institute, Memorial University Medical Center, Savannah, Georgia, USA
Search for other papers by Jasmeet Kaur in
Google Scholar
PubMed
Augusta University School of Medicine, Augusta, Georgia, USA
Neonatology Intensive Care Unit, Memorial University Medical Center, Georgia, USA
Search for other papers by Alan M Rice in
Google Scholar
PubMed
Search for other papers by Elizabeth O’Connor in
Google Scholar
PubMed
Neonatology Intensive Care Unit, Memorial University Medical Center, Georgia, USA
Search for other papers by Anil Piya in
Google Scholar
PubMed
Search for other papers by Bradley Buckler in
Google Scholar
PubMed
Anderson Cancer Institute, Memorial University Medical Center, Savannah, Georgia, USA
Search for other papers by Himangshu S Bose in
Google Scholar
PubMed
Congenital adrenal hyperplasia (CAH) is caused by mutations in cytochrome P450 side chain cleavage enzyme (CYP11A1 and old name, SCC). Errors in cholesterol side chain cleavage by the mitochondrial resident CYP11A1 results in an inadequate amount of pregnenolone production. This study was performed to evaluate the cause of salt-losing crisis and possible adrenal failure in a pediatric patient whose mother had a history of two previous stillbirths and loss of another baby within a week of birth. CAH can appear in any population in any region of the world. The study was conducted at Memorial University Medical Center and Mercer University School of Medicine. The patient was admitted to Pediatric Endocrinology Clinic due to salt-losing crisis and possible adrenal failure. The patient had CAH, an autosomal recessive disease, due to a novel mutation in exon 5 of the CYP11A1 gene, which generated a truncated protein of 286 amino acids compared with wild-type protein that has 521 amino acids (W286X). Although unrelated, both parents are carriers. Mitochondrial protein import analysis of the mutant CYP11A1 in steroidogenic MA-10 cells showed that the protein is imported in a similar fashion as observed for the wild-type protein and was cleaved to a shorter fragment. However, mutant’s activity was 10% of that obtained for the wild-type protein in non-steroidogenic COS-1 cells. In a patient of Mexican descent, a homozygous CYP11A1 mutation caused CAH, suggesting that this disease is not geographically restricted even in a homogeneous population.
Learning points:
-
Novel mutation in CYP11A1 causes CAH;
-
This is a pure population from Central Mexico;
-
Novel mutation created early truncated protein.
Search for other papers by Jasmeet Kaur in
Google Scholar
PubMed
Search for other papers by Luis Casas in
Google Scholar
PubMed
Anderson Cancer Institute, Memorial University Medical Center, Savannah, Georgia, 31404, USA
Search for other papers by Himangshu S Bose in
Google Scholar
PubMed
Summary
Lipoid congenital adrenal hyperplasia (lipoid CAH), the most severe form of CAH, is most commonly caused by mutations in steroidogenic acute regulatory protein (STAR), which is required for the movement of cholesterol from the outer to the inner mitochondrial membranes to synthesize pregnenolone. This study was performed to evaluate whether the salt-losing crisis and the adrenal inactivity experienced by a Scandinavian infant is due to a de novo STAR mutation. The study was conducted at the University of North Dakota, the Mercer University School of Medicine and the Memorial University Medical Center to identify the cause of this disease. The patient was admitted to a pediatric endocrinologist at the Sanford Health Center for salt-losing crisis and possible adrenal failure. Lipoid CAH is an autosomal recessive disease, we identified two de novo heterozygous mutations (STAR c.444C>A (STAR p.N148K) and STAR c.557C>T (STAR p.R193X)) in the STAR gene, causing lipoid CAH. New onset lipoid CAH can occur through de novo mutations and is not restricted to any specific region of the world. This Scandinavian family was of Norwegian descent and had lipoid CAH due to a mutation in S TAR exons 4 and 5. Overexpression of the STAR p.N148K mutant in nonsteroidogenic COS-1 cells supplemented with an electron transport system showed activity similar to the background level, which was ∼10% of that observed with wild-type (WT) STAR. Protein-folding analysis showed that the finger printing of the STAR p.N148K mutant is also different from the WT protein. Inherited STAR mutations may be more prevalent in some geographical areas but not necessarily restricted to those regions.
Learning points
-
STAR mutations cause lipoid CAH.
-
This is a pure population from a caucasian family.
-
Mutation ablated STAR activity.
-
The mutation resulted in loosely folded conformation of STAR.
Search for other papers by Nicole Maison in
Google Scholar
PubMed
Search for other papers by Esther Korpershoek in
Google Scholar
PubMed
Search for other papers by Graeme Eisenhofer in
Google Scholar
PubMed
Search for other papers by Mercedes Robledo in
Google Scholar
PubMed
Department of Pathology, Reinier de Graaf Hospital, Delft, The Netherlands
Search for other papers by Ronald de Krijger in
Google Scholar
PubMed
Search for other papers by Felix Beuschlein in
Google Scholar
PubMed
Summary
Pheochromocytomas (PCC) and paraganglioma (PGL) are rare neuroendocrine tumors arising from chromaffin cells of the neural crest. Mutations in the RET-proto-oncogene are associated with sporadic pheochromocytoma, familial or sporadic medullary thyroid carcinoma (MTC) and multiple endocrine neoplasia type 2. In the past, only few cases of pigmented PCCs, PGLs, and one case of pigmented MTC have been reported in the literature. Herein, we present the case of a 77-year old woman with a history of Tako-tsubo-cardiomyopathy and laboratory, as well as radiological, high suspicion of pheochromocytoma, who underwent left-sided adrenalectomy. The 3 cm tumor, which was located on the upper pole of the left adrenal, appeared highly pigmented with dark red to black color. Histologic examinations revealed highly pleomorphic cells with bizarre, huge hyperchromatic nuclei, that immunohistochemically were positive for chromogranin A and synaptophysin, focally positive for HMB45 and negative for melan A. These clinical and pathological features led to the diagnosis of the rare variant of a melanotic ‘black’ pheochromocytoma. In our case a somatic RET mutation in exon 16 (RET c.2753T>C, p.Met918Thy) was detected by targeted next generation sequencing. In summary, this case represents a rare variant of catecholamine-producing tumor with distinct histological features. A potential relationship between the phenotype, the cellular origin and the genetic alterations is discussed.
Learning points
-
Pheochromocytoma is a rare neuroendocrine tumor.
-
Pigmentation is seen in several types of tumors arising from the neural crest. The macroscopic black aspect can mislead to the diagnosis of a metastasis deriving from a malignant melanoma.
-
RET mutation are seen in catecholamine and non-catecholamine producing tumors of the same cellular origin.
Search for other papers by W C Candy Sze in
Google Scholar
PubMed
Search for other papers by Joe McQuillan in
Google Scholar
PubMed
Search for other papers by P Nicholas Plowman in
Google Scholar
PubMed
Search for other papers by Niall MacDougall in
Google Scholar
PubMed
Search for other papers by Philip Blackburn in
Google Scholar
PubMed
Search for other papers by H Ian Sabin in
Google Scholar
PubMed
Search for other papers by Nadeem Ali in
Google Scholar
PubMed
Search for other papers by William M Drake in
Google Scholar
PubMed
Summary
We report three patients who developed symptoms and signs of ocular neuromyotonia (ONM) 3–6 months after receiving gamma knife radiosurgery (GKS) for functioning pituitary tumours. All three patients were complex, requiring multi-modality therapy and all had received prior external irradiation to the sellar region. Although direct causality cannot be attributed, the timing of the development of the symptoms would suggest that the GKS played a contributory role in the development of this rare problem, which we suggest clinicians should be aware of as a potential complication.
Learning points
-
GKS can cause ONM, presenting as intermittent diplopia.
-
ONM can occur quite rapidly after treatment with GKS.
-
Treatment with carbamazepine is effective and improve patient's quality of life.
Hormones and Cancer Group, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales, 2010, Australia
Search for other papers by Sunita M C De Sousa in
Google Scholar
PubMed
Search for other papers by Peter Earls in
Google Scholar
PubMed
Hormones and Cancer Group, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales, 2010, Australia
Search for other papers by Ann I McCormack in
Google Scholar
PubMed
Summary
Pituitary hyperplasia (PH) occurs in heterogeneous settings and remains under-recognised. Increased awareness of this condition and its natural history should circumvent unnecessary trans-sphenoidal surgery. We performed an observational case series of patients referred to a single endocrinologist over a 3-year period. Four young women were identified with PH manifesting as diffuse, symmetrical pituitary enlargement near or touching the optic apparatus on MRI. The first woman presented with primary hypothyroidism and likely had thyrotroph hyperplasia given prompt resolution with thyroxine. The second and third women were diagnosed with pathological gonadotroph hyperplasia due to primary gonadal insufficiency, with histopathological confirmation including gonadal-deficiency cells in the third case where surgery could have been avoided. The fourth woman likely had idiopathic PH, though she had concomitant polycystic ovary syndrome which is a debated cause of PH. Patients suspected of PH should undergo comprehensive hormonal, radiological and sometimes ophthalmological evaluation. This is best conducted by a specialised multidisciplinary team with preference for treatment of underlying conditions and close monitoring over surgical intervention.
Learning points
-
Normal pituitary dimensions are influenced by age and gender with the greatest pituitary heights seen in young adults and perimenopausal women.
-
Pituitary enlargement may be seen in the settings of pregnancy, end-organ insufficiency with loss of negative feedback, and excess trophic hormone from the hypothalamus or neuroendocrine tumours.
-
PH may be caused or exacerbated by medications including oestrogen, GNRH analogues and antipsychotics.
-
Management involves identification of cases of idiopathic PH suitable for simple surveillance and reversal of pathological or iatrogenic causes where they exist.
-
Surgery should be avoided in PH as it rarely progresses.