Diagnosis and Treatment > Investigation > DNA sequencing

You are looking at 31 - 33 of 33 items

Jin-Ying Lu Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan

Search for other papers by Jin-Ying Lu in
Google Scholar
PubMed
Close
,
Po-Ju Hung Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan

Search for other papers by Po-Ju Hung in
Google Scholar
PubMed
Close
,
Pei-Lung Chen Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
Department of Medical Genetics, National Taiwan University Hospital, Taipei, 100, Taiwan
Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100, Taiwan
Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, 100, Taiwan
Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 100, Taiwan

Search for other papers by Pei-Lung Chen in
Google Scholar
PubMed
Close
,
Ruoh-Fang Yen Department of Nuclear Medicine, National Taiwan University, Taipei, 100, Taiwan

Search for other papers by Ruoh-Fang Yen in
Google Scholar
PubMed
Close
,
Kuan-Ting Kuo Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
Department of Pathology, National Taiwan University Hospital, Taipei, 100, Taiwan

Search for other papers by Kuan-Ting Kuo in
Google Scholar
PubMed
Close
,
Tsung-Lin Yang Department of Otolaryngology, National Taiwan University Hospital, Taipei, 100, Taiwan

Search for other papers by Tsung-Lin Yang in
Google Scholar
PubMed
Close
,
Chih-Yuan Wang Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan

Search for other papers by Chih-Yuan Wang in
Google Scholar
PubMed
Close
,
Tien-Chun Chang Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
Department of Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan

Search for other papers by Tien-Chun Chang in
Google Scholar
PubMed
Close
,
Tien-Shang Huang Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
Department of Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
Department of Social Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
Department of Medicine, Cathay General Hospital, Taipei, 106, Taiwan

Search for other papers by Tien-Shang Huang in
Google Scholar
PubMed
Close
, and
Ching-Chung Chang Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
Department of Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
Department of Internal Medicine, China Medical University Hospital, Taichung, 404, Taiwan
Department of Internal Medicine, China Medical University, Taichung, 404, Taiwan

Search for other papers by Ching-Chung Chang in
Google Scholar
PubMed
Close

Summary

We report a case of follicular thyroid carcinoma with concomitant NRAS p.Q61K and GNAS p.R201H mutations, which manifested as a 13.5 cm thyroid mass with lung, humerus and T9 spine metastases, and exhibited good response to radioactive iodine treatment.

Learning points

  • GNAS p.R201H somatic mutation is an activating or gain-of-function mutation resulting in constitutively activated Gs-alpha protein and downstream cAMP cascade, independent of TSH signaling, causing autonomously functioning thyroid nodules.

  • NRAS p.Q61K mutations with GNAS p.R201H mutations are known for a good radioactive iodine treatment response.

  • Further exploration of the GNAS-activating pathway may provide therapeutic insights into the treatment of metastatic follicular carcinoma.

Open access
Yael R Nobel Department of Medicine, Columbia University Medical Center, New York, New York, 10032, USA

Search for other papers by Yael R Nobel in
Google Scholar
PubMed
Close
,
Maya B Lodish Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Maya B Lodish in
Google Scholar
PubMed
Close
,
Margarita Raygada Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Margarita Raygada in
Google Scholar
PubMed
Close
,
Jaydira Del Rivero Medical Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 12N-226, Bethesda, Maryland, 20892, USA

Search for other papers by Jaydira Del Rivero in
Google Scholar
PubMed
Close
,
Fabio R Faucz Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Fabio R Faucz in
Google Scholar
PubMed
Close
,
Smita B Abraham Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Smita B Abraham in
Google Scholar
PubMed
Close
,
Charalampos Lyssikatos Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Charalampos Lyssikatos in
Google Scholar
PubMed
Close
,
Elena Belyavskaya Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Elena Belyavskaya in
Google Scholar
PubMed
Close
,
Constantine A Stratakis Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA

Search for other papers by Constantine A Stratakis in
Google Scholar
PubMed
Close
, and
Mihail Zilbermint Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, BG 10-CRC, Room 1-3216, 10 Center Drive, Bethesda, Maryland, 20814, USA
Johns Hopkins University School of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baltimore, Maryland, 21287, USA
Suburban Hospital, Bethesda, Maryland, 20814, USA

Search for other papers by Mihail Zilbermint in
Google Scholar
PubMed
Close

Summary

Autosomal recessive pseudohypoaldosteronism type 1 (PHA1) is a rare disorder characterized by sodium wasting, failure to thrive, hyperkalemia, hypovolemia and metabolic acidosis. It is due to mutations in the amiloride-sensitive epithelial sodium channel (ENaC) and is characterized by diminished response to aldosterone. Patients may present with life-threatening hyperkalemia, which must be recognized and appropriately treated. A 32-year-old female was referred to the National Institutes of Health (NIH) for evaluation of hyperkalemia and muscle pain. Her condition started in the second week of life, when she was brought to an outside hospital lethargic and unresponsive. At that time, she was hypovolemic, hyperkalemic and acidotic, and was eventually treated with sodium bicarbonate and potassium chelation. At the time of the presentation to the NIH, her laboratory evaluation revealed serum potassium 5.1 mmol/l (reference range: 3.4–5.1 mmol/l), aldosterone 2800 ng/dl (reference range: ≤21 ng/dl) and plasma renin activity 90 ng/ml/h (reference range: 0.6–4.3 ng/ml per h). Diagnosis of PHA1 was suspected. Sequencing of the SCNN1B gene, which codes for ENaC, revealed that the patient is a compound heterozygote for two novel variants (c.1288delC and c.1466+1 G>A), confirming the suspected diagnosis of PHA1. In conclusion, we report a patient with novel variants of the SCNN1B gene causing PHA1 with persistent, symptomatic hyperkalemia.

Learning points

  • PHA1 is a rare genetic condition, causing functional abnormalities of the amiloride-sensitive ENaC.

  • PHA1 was caused by previously unreported SCNN1B gene mutations (c.1288delC and c.1466+1 G>A).

  • Early recognition of this condition and adherence to symptomatic therapy is important, as the electrolyte abnormalities found may lead to severe dehydration, cardiac arrhythmias and even death.

  • High doses of sodium polystyrene sulfonate, sodium chloride and sodium bicarbonate are required for symptomatic treatment.

Open access
Chrisanthi Marakaki Third Department of Pediatrics, Attikon University Hospital, Rimini 1 Haidari, Athens, 12462Greece

Search for other papers by Chrisanthi Marakaki in
Google Scholar
PubMed
Close
,
Anna Papadopoulou Third Department of Pediatrics, Attikon University Hospital, Rimini 1 Haidari, Athens, 12462Greece

Search for other papers by Anna Papadopoulou in
Google Scholar
PubMed
Close
,
Olga Karapanou
Search for other papers by Olga Karapanou in
Google Scholar
PubMed
Close
,
Dimitrios T Papadimitriou Third Department of Pediatrics, Attikon University Hospital, Rimini 1 Haidari, Athens, 12462Greece

Search for other papers by Dimitrios T Papadimitriou in
Google Scholar
PubMed
Close
,
Kleanthis Kleanthous Third Department of Pediatrics, Attikon University Hospital, Rimini 1 Haidari, Athens, 12462Greece

Search for other papers by Kleanthis Kleanthous in
Google Scholar
PubMed
Close
, and
Anastasios Papadimitriou Third Department of Pediatrics, Attikon University Hospital, Rimini 1 Haidari, Athens, 12462Greece

Search for other papers by Anastasios Papadimitriou in
Google Scholar
PubMed
Close

Summary

11β-hydroxylase deficiency (11β-OHD), an autosomal recessive inherited disorder, accounts for 5–8% of congenital adrenal hyperplasia. In Greece, no cases of 11β-OHD have been described so far. The patient presented at the age of 13 months with mild virilization of external genitalia and pubic hair development since the age of 3 months. Hormonal profile showed elevated 11-deoxycortisol, adrenal androgens and ACTH levels. ACTH stimulation test was compatible with 11β-OHD. DNA of the proband and her parents was isolated and genotyped for CYP11B1 gene coding cytochrome P450c11. The girl was found to be compound heterozygous for two CYP11B1 novel mutations, p.Ala386Glu (exon 7), inherited from the father and p.Leu471Argin (exon 9) from the mother. Hydrocortisone supplementation therapy was initiated. Four years after presentation she remains normotensive, her growth pattern is normal and the bone age remains advanced despite adequate suppression of adrenal androgens.

Learning points

  • 11β-hydroxylase (CYP11B1) deficiency (11OHD; OMIM +202010) is the second most common cause of CAH accounting for approximately 5–8% of cases with an incidence of 1:100 000–1:200 000 live births in non-consanguineous populations.

  • Two CYP11B1 inactivating novel mutations, p.Ala386Glu and p.Leu471Arg are reported

  • Regarding newborn females, in utero androgen excess results in ambiguous genitalia, whereas in the male newborn diagnosis may go undetected. In infancy and childhood adrenal androgen overproduction results in peripheral precocious puberty in boys and various degrees of virilization in girls.

  • Accumulation of 11-deoxycorticosterone and its metabolites causes hypertension in about two thirds of patients.

  • Diagnosis lies upon elevated 11-deoxycortisol and DOC plus upstream precursors, such as 17α-hydroxyprogesterone and Δ4-androstenedione.

  • The established treatment of steroid 11β-OHD is similar to that of steroid 21-hydroxylase deficiency and consists of glucocorticoid administration in order to reduce ACTH-driven DOC overproduction resulting in hypertension remission and improvement of the virilization symptoms.

Open access