Diagnosis and Treatment > Investigation > GADA
You are looking at 1 - 10 of 18 items
Division of Endocrinology and Metabolism, Dokuz Eylul University, Izmir, Turkey
Search for other papers by Baris Akinci in
Google Scholar
PubMed
Search for other papers by Rasimcan Meral in
Google Scholar
PubMed
Search for other papers by Diana Rus in
Google Scholar
PubMed
Search for other papers by Rita Hench in
Google Scholar
PubMed
Search for other papers by Adam H Neidert in
Google Scholar
PubMed
Search for other papers by Frank DiPaola in
Google Scholar
PubMed
Search for other papers by Maria Westerhoff in
Google Scholar
PubMed
Search for other papers by Simeon I Taylor in
Google Scholar
PubMed
Search for other papers by Elif A Oral in
Google Scholar
PubMed
Summary
A patient with atypical partial lipodystrophy who had a transient initial response to metreleptin experienced acute worsening of her metabolic state when neutralizing antibodies against metreleptin appeared. Because her metabolic status continued to deteriorate, a therapeutic trial with melanocortin-4 receptor agonist setmelanotide, that is believed to function downstream from leptin receptor in the leptin signaling system, was undertaken in an effort to improve her metabolic status for the first time in a patient with lipodystrophy. To achieve this, a compassionate use (investigational new drug application; IND) was initiated (NCT03262610). Glucose control, body fat by dual-energy X-ray absorptiometry and MRI, and liver fat by proton density fat fraction were monitored. Daily hunger scores were assessed by patient filled questionnaires. Although there was a slight decrease in hunger scales and visceral fat, stimulating melanocortin-4 receptor by setmelanotide did not result in any other metabolic benefit such as improvement of hypertriglyceridemia or diabetes control as desired. Targeting melanocortin-4 receptor to regulate energy metabolism in this setting was not sufficient to obtain a significant metabolic benefit. However, complex features of our case make it difficult to generalize these observations to all cases of lipodystrophy. It is still possible that melanocortin-4 receptor agonistic action may offer some therapeutic benefits in leptin-deficient patients.
Learning points:
-
A patient with atypical lipodystrophy with an initial benefit with metreleptin therapy developed neutralizing antibodies to metreleptin (Nab-leptin), which led to substantial worsening in metabolic control. The neutralizing activity in her serum persisted for longer than 3 years.
-
Whether the worsening in her metabolic state was truly caused by the development of Nab-leptin cannot be fully ascertained, but there was a temporal relationship. The experience noted in our patient at least raises the possibility for concern for substantial metabolic worsening upon emergence and persistence of Nab-leptin. Further studies of cases where Nab-leptin is detected and better assay systems to detect and characterize Nab-leptin are needed.
-
The use of setmelanotide, a selective MC4R agonist targeting specific neurons downstream from the leptin receptor activation, was not effective in restoring metabolic control in this complex patient with presumed diminished leptin action due to Nab-leptin.
-
Although stimulating the MC4R pathway was not sufficient to obtain a significant metabolic benefit in lowering triglycerides and helping with her insulin resistance as was noted with metreleptin earlier, there was a mild reduction in reported food intake and appetite.
-
Complex features of our case make it difficult to generalize our observation to all leptin-deficient patients. It is possible that some leptin-deficient patients (especially those who need primarily control of food intake) may still theoretically benefit from MC4R agonistic action, and further studies in carefully selected patients may help to tease out the differential pathways of metabolic regulation by the complex network of leptin signaling system.
Diabetes and Metabolism, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
Search for other papers by Shivani Patel in
Google Scholar
PubMed
St Vincent’s Clinical School, UNSW Sydney, Darlinghurst, New South Wales, Australia
Search for other papers by Venessa Chin in
Google Scholar
PubMed
Diabetes and Metabolism, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
St Vincent’s Clinical School, UNSW Sydney, Darlinghurst, New South Wales, Australia
Search for other papers by Jerry R Greenfield in
Google Scholar
PubMed
Summary
Durvalumab is a programmed cell death ligand 1 inhibitor, which is now approved in Australia for use in non-small-cell lung and urothelial cancers. Autoimmune diabetes is a rare immune-related adverse effect associated with the use of immune checkpoint inhibitor therapy. It is now being increasingly described reflecting the wider use of immune checkpoint inhibitor therapy. We report the case of a 49-year-old female who presented with polyuria, polydipsia and weight loss, 3 months following the commencement of durvalumab. On admission, she was in severe diabetic ketoacidosis with venous glucose: 20.1 mmol/L, pH: 7.14, bicarbonate 11.2 mmol/L and serum beta hydroxybutyrate: >8.0 mmol/L. She had no personal or family history of diabetes or autoimmune disease. Her HbA1c was 7.8% and her glutamic acid decarboxylase (GAD) antibodies were mildly elevated at 2.2 mU/L (reference range: <2 mU/L) with negative zinc transporter 8 (ZnT8) and islet cell (ICA) antibodies. Her fasting C-peptide was low at 86 pmol/L (reference range: 200–1200) with a corresponding serum glucose of 21.9 mmol/L. She was promptly stabilised with an insulin infusion in intensive care and discharged on basal bolus insulin. Durvalumab was recommenced once her glycaemic control had stabilised. Thyroid function tests at the time of admission were within normal limits with negative thyroid autoantibodies. Four weeks post discharge, repeat thyroid function tests revealed hypothyroidism, with an elevated thyroid-stimulating hormone (TSH) at 6.39 mIU/L (reference range: 0.40–4.80) and low free T4: 5.9 pmol/L (reference range: 8.0–16.0). These findings persisted with repeat testing despite an absence of clinical symptoms. Treatment with levothyroxine was commenced after excluding adrenal insufficiency (early morning cortisol: 339 nmol/L) and hypophysitis (normal pituitary on MRI).
Learning points:
-
Durvalumab use is rarely associated with fulminant autoimmune diabetes, presenting with severe DKA.
-
Multiple endocrinopathies can co-exist with the use of a single immune checkpoint inhibitors; thus, patients should be regularly monitored.
-
Regular blood glucose levels should be performed on routine pathology on all patients on immune checkpoint inhibitor.
-
Clinician awareness of immunotherapy-related diabetes needs to increase in an attempt to detect hyperglycaemia early and prevent DKA.
Search for other papers by Khaled Aljenaee in
Google Scholar
PubMed
Search for other papers by Osamah Hakami in
Google Scholar
PubMed
Search for other papers by Colin Davenport in
Google Scholar
PubMed
Search for other papers by Gemma Farrell in
Google Scholar
PubMed
Search for other papers by Tommy Kyaw Tun in
Google Scholar
PubMed
Search for other papers by Agnieszka Pazderska in
Google Scholar
PubMed
Search for other papers by Niamh Phelan in
Google Scholar
PubMed
Search for other papers by Marie-Louise Healy in
Google Scholar
PubMed
Search for other papers by Seamus Sreenan in
Google Scholar
PubMed
Search for other papers by John H McDermott in
Google Scholar
PubMed
Summary
Measurement of glycated haemoglobin (HbA1c) has been utilised in assessing long-term control of blood glucose in patients with diabetes, as well as diagnosing diabetes and identifying patients at increased risk of developing diabetes in the future. HbA1c reflects the level of blood glucose to which the erythrocyte has been exposed during its lifespan, and there are a number of clinical situations affecting the erythrocyte life span in which HbA1c values may be spuriously high or low and therefore not reflective of the true level of glucose control. In the present case series, we describe the particulars of three patients with diabetes who had spuriously low HbA1c levels as a result of dapsone usage. Furthermore, we discuss the limitations of HbA1c testing and the mechanisms by which it may be affected by dapsone in particular.
Learning points:
-
Various conditions and medications can result in falsely low HbA1c.
-
Dapsone can lead to falsely low HbA1c by inducing haemolysis and by forming methaemoglobin.
-
Capillary glucose measurement, urine glucose measurements and fructosamine levels should be used as alternatives to HbA1c for monitoring glycaemic control if it was falsely low or high.
Search for other papers by Jose León Mengíbar in
Google Scholar
PubMed
Search for other papers by Ismael Capel in
Google Scholar
PubMed
Search for other papers by Teresa Bonfill in
Google Scholar
PubMed
Search for other papers by Isabel Mazarico in
Google Scholar
PubMed
Search for other papers by Laia Casamitjana Espuña in
Google Scholar
PubMed
Search for other papers by Assumpta Caixàs in
Google Scholar
PubMed
Search for other papers by Mercedes Rigla in
Google Scholar
PubMed
Summary
Durvalumab, a human immunoglobulin G1 kappa monoclonal antibody that blocks the interaction of programmed cell death ligand 1 (PD-L1) with the PD-1 and CD80 (B7.1) molecules, is increasingly used in advanced neoplasias. Durvalumab use is associated with increased immune-related adverse events. We report a case of a 55-year-old man who presented to our emergency room with hyperglycaemia after receiving durvalumab for urothelial high-grade non-muscle-invasive bladder cancer. On presentation, he had polyuria, polyphagia, nausea and vomiting, and laboratory test revealed diabetic ketoacidosis (DKA). Other than durvalumab, no precipitating factors were identified. Pre-durvalumab blood glucose was normal. The patient responded to treatment with intravenous fluids, insulin and electrolyte replacement. Simultaneously, he presented a thyroid hormone pattern that evolved in 10 weeks from subclinical hyperthyroidism (initially attributed to iodinated contrast used in a previous computerised tomography) to overt hyperthyroidism and then to severe primary hypothyroidism (TSH: 34.40 µU/mL, free thyroxine (FT4): <0.23 ng/dL and free tri-iodothyronine (FT3): 0.57 pg/mL). Replacement therapy with levothyroxine was initiated. Finally, he was tested positive for anti-glutamic acid decarboxylase (GAD65), anti-thyroglobulin (Tg) and antithyroid peroxidase (TPO) antibodies (Abs) and diagnosed with type 1 diabetes mellitus (DM) and silent thyroiditis caused by durvalumab. When durvalumab was stopped, he maintained the treatment of multiple daily insulin doses and levothyroxine. Clinicians need to be alerted about the development of endocrinopathies, such as DM, DKA and primary hypothyroidism in the patients receiving durvalumab.
Learning points:
-
Patients treated with anti-PD-L1 should be screened for the most common immune-related adverse events (irAEs).
-
Glucose levels and thyroid function should be monitored before and during the treatment.
-
Durvalumab is mainly associated with thyroid and endocrine pancreas dysfunction.
-
In the patients with significant autoimmune background, risk–benefit balance of antineoplastic immunotherapy should be accurately assessed.
Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
Search for other papers by Suguru Watanabe in
Google Scholar
PubMed
Search for other papers by Jun Kido in
Google Scholar
PubMed
Search for other papers by Mika Ogata in
Google Scholar
PubMed
Search for other papers by Kimitoshi Nakamura in
Google Scholar
PubMed
Search for other papers by Tomoyuki Mizukami in
Google Scholar
PubMed
Summary
Hyperglycemic hyperosmolar state (HHS) and diabetic ketoacidosis (DKA) are the most severe acute complications of diabetes mellitus (DM). HHS is characterized by severe hyperglycemia and hyperosmolality without significant ketosis and acidosis. A 14-year-old Japanese boy presented at the emergency room with lethargy, polyuria and polydipsia. He belonged to a baseball club team and habitually drank sugar-rich beverages daily. Three weeks earlier, he suffered from lassitude and developed polyuria and polydipsia 1 week later. He had been drinking more sugar-rich isotonic sports drinks (approximately 1000–1500 mL/day) than usual (approximately 500 mL/day). He presented with HHS (hyperglycemia (1010 mg/dL, HbA1c 12.3%) and mild hyperosmolality (313 mOsm/kg)) without acidosis (pH 7.360), severe ketosis (589 μmol/L) and ketonuria. He presented HHS in type 1 diabetes mellitus (T1DM) with elevated glutamate decarboxylase antibody and islet antigen 2 antibody. Consuming beverages with high sugar concentrations caused hyperglycemia and further exacerbates thirst, resulting in further beverage consumption. Although he recovered from HHS following intensive transfusion and insulin treatment, he was significantly sensitive to insulin therapy. Even the appropriate amount of insulin may result in dramatically decreasing blood sugar levels in patients with T1DM. We should therefore suspect T1DM in patients with HHS but not those with obesity. Moreover, age, clinical history and body type are helpful for identifying T1DM and HHS. Specifically, drinking an excess of beverages rich in sugars represents a risk of HHS in juvenile/adolescent T1DM patients.
Learning points:
-
Hyperglycemic hyperosmolar state (HHS) is characterized by severe hyperglycemia and hyperosmolality without significant ketosis and acidosis.
-
The discrimination between HHS of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) in initial presentation is difficult.
-
Pediatrician should suspect T1DM in patients with HHS but not obesity.
-
Age, clinical history and body type are helpful for identifying T1DM and HHS.
-
Children with T1DM are very sensitive to insulin treatment, and even appropriate amount of insulin may result in dramatically decreasing blood sugar levels.
Search for other papers by Aoife Garrahy in
Google Scholar
PubMed
Search for other papers by Matilde Bettina Mijares Zamuner in
Google Scholar
PubMed
Search for other papers by Maria M Byrne in
Google Scholar
PubMed
Summary
Coexistence of autoimmune diabetes and maturity-onset diabetes of the young (MODY) is rare. We report the first case of coexisting latent autoimmune diabetes of adulthood (LADA) and glucokinase (GCK) MODY. A 32-year-old woman was treated with insulin for gestational diabetes at age 32 years; post-partum, her fasting blood glucose was 6.0 mmol/L and 2-h glucose was 11.8 mmol/L following an oral glucose tolerance test, and she was maintained on diet alone. Five years later, a diagnosis of LADA was made when she presented with fasting blood glucose of 20.3 mmol/L and HbA1C 125 mmol/mol (13.6%). GCK-MODY was identified 14 years later when genetic testing was prompted by identification of a mutation in her cousin. Despite multiple daily insulin injections her glycaemic control remained above target and her clinical course has been complicated by multiple episodes of hypoglycaemia with unawareness. Although rare, coexistence of latent autoimmune diabetes of adulthood and monogenic diabetes should be considered if there is a strong clinical suspicion, for example, family history. Hypoglycaemic unawareness developed secondary to frequent episodes of hypoglycaemia using standard glycaemic targets for LADA. This case highlights the importance of setting fasting glucose targets within the expected range for GCK-MODY in subjects with coexisting LADA.
Learning points:
-
We report the first case of coexisting latent autoimmune diabetes of adulthood (LADA) and GCK-MODY.
-
It has been suggested that mutations in GCK may lead to altered counter-regulation and recognition of hypoglycaemia at higher blood glucose levels than patients without such mutation. However, in our case, hypoglycaemic unawareness developed secondary to frequent episodes of hypoglycaemia using standard glycaemic targets for LADA.
-
This case highlights the importance of setting fasting glucose targets within the expected range for GCK-MODY in subjects with coexisting LADA to avoid hypoglycaemia.
Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
German Center for Diabetes Research (DZD), München-Neuherberg, Germany
Search for other papers by Sebastian Hörber in
Google Scholar
PubMed
Search for other papers by Sarah Hudak in
Google Scholar
PubMed
Search for other papers by Martin Kächele in
Google Scholar
PubMed
Search for other papers by Dietrich Overkamp in
Google Scholar
PubMed
Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
German Center for Diabetes Research (DZD), München-Neuherberg, Germany
Search for other papers by Andreas Fritsche in
Google Scholar
PubMed
Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
German Center for Diabetes Research (DZD), München-Neuherberg, Germany
Search for other papers by Hans-Ulrich Häring in
Google Scholar
PubMed
Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
German Center for Diabetes Research (DZD), München-Neuherberg, Germany
Search for other papers by Andreas Peter in
Google Scholar
PubMed
Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
German Center for Diabetes Research (DZD), München-Neuherberg, Germany
Search for other papers by Martin Heni in
Google Scholar
PubMed
Summary
Diabetic ketoacidosis is a life-threatening complication of diabetes mellitus. It usually occurs in patients with type 1 diabetes where it is typically associated with only moderately increased blood glucose. Here, we report the case of a 52-year-old female patient who was admitted to the emergency unit with severely altered mental status but stable vital signs. Laboratory results on admission revealed very high blood glucose (1687 mg/dL/93.6 mmol/L) and severe acidosis (pH <7) with proof of ketone bodies in serum and urine. Past history revealed a paranoid schizophrenia diagnosed 10 years ago and for which the patient was treated with risperidone for many years. Acute treatment with intravenous fluids, intravenous insulin infusion and sodium bicarbonate improved the symptoms. Further laboratory investigations confirmed diagnosis of autoimmune type 1 diabetes. After normalization of blood glucose levels, the patient could soon be discharged with a subcutaneous insulin therapy.
Learning points:
-
Diabetic ketoacidosis as first manifestation of type 1 diabetes can occur with markedly elevated blood glucose concentrations in elder patients.
-
Atypical antipsychotics are associated with hyperglycemia and an increased risk of new-onset diabetes.
-
First report of risperidone-associated diabetic ketoacidosis in new-onset type 1 diabetes.
-
Patients treated with atypical antipsychotics require special care and regular laboratory examinations to detect hyperglycemia and diabetic ketoacidosis.
-
In cases when the diagnosis is in doubt, blood gas analysis as well as determination of C-peptide and islet autoantibodies can help to establish the definite diabetes type.
Search for other papers by Senhong Lee in
Google Scholar
PubMed
Search for other papers by Aparna Morgan in
Google Scholar
PubMed
Search for other papers by Sonali Shah in
Google Scholar
PubMed
Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
Search for other papers by Peter R Ebeling in
Google Scholar
PubMed
Summary
We report a case of a 67-year-old man with type 2 diabetes presented with diabetic ketoacidosis, two weeks after his first dose of nivolumab therapy for non–small-cell lung carcinoma. He was started on empagliflozin two days prior in the setting of hyperglycaemia after the initiation of nivolumab therapy. Laboratory evaluation revealed an undetectable C-peptide and a positive anti-glutamic acid decarboxylase (GAD) antibody. He was treated with intravenous fluids and insulin infusion and was subsequently transitioned to subcutaneous insulin and discharged home. He subsequently has developed likely autoimmune thyroiditis and autoimmune encephalitis.
Learning points:
-
Glycemic surveillance in patients receiving immune checkpoint inhibitors is recommended.
-
Early glycemic surveillance after commencement of anti-programmed cell death-1 (PD-1) inhibitors may be indicated in selected populations, including patients with underlying type 2 diabetes mellitus and positive anti-glutamic acid decarboxylase (GAD) antibody.
-
Sodium-glucose co transporter-2 (SGLT2) inhibitors should be used with caution in patients on immunotherapy.
Search for other papers by Akihiko Ando in
Google Scholar
PubMed
Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa Japan
Search for other papers by Shoichiro Nagasaka in
Google Scholar
PubMed
Search for other papers by Shun Ishibashi in
Google Scholar
PubMed
Summary
We report a case of a woman with diabetes mellitus caused by a genetic defect in ABCC8-coding sulfonylurea receptor 1 (SUR1), a subunit of the ATP-sensitive potassium (KATP) channel protein. She was diagnosed with diabetes at 7 days after birth. After intravenous insulin drip for 1 month, her hyperglycaemia remitted. At the age of 13 years, her diabetes relapsed, and after that she had been treated by intensive insulin therapy for 25 years with relatively poor glycaemic control. She was switched to oral sulfonylurea therapy and attained euglycaemia. In addition, her insulin secretory capacity was ameliorated gradually.
Learning points:
-
Genetic testing should be considered in any individuals or family with diabetes that occurred within the first year or so of life.
-
Sulfonylurea can achieve good glycaemic control in patients with KATP channel mutations by restoring endogenous insulin secretion, even if they were treated with insulin for decades.
-
Early screening and genetic testing are important to improve the prognosis of patients with neonatal diabetes mellitus arising from ABCC8 or KCNJ11 mutation.
Search for other papers by Ploutarchos Tzoulis in
Google Scholar
PubMed
Search for other papers by Richard W Corbett in
Google Scholar
PubMed
Search for other papers by Swarupini Ponnampalam in
Google Scholar
PubMed
Search for other papers by Elly Baker in
Google Scholar
PubMed
Search for other papers by Daniel Heaton in
Google Scholar
PubMed
Search for other papers by Triada Doulgeraki in
Google Scholar
PubMed
Search for other papers by Justin Stebbing in
Google Scholar
PubMed
Summary
Five days following the 3rd cycle of nivolumab, a monoclonal antibody, which acts as immune checkpoint inhibitor against the programmed cell death protein-1, for metastatic lung adenocarcinoma, a 56-year-old woman presented at the hospital critically ill. On admission, she had severe diabetic ketoacidosis (DKA), as evidenced by venous glucose of 47 mmol/L, blood ketones of 7.5 mmol/L, pH of 6.95 and bicarbonate of 6.6 mmol/L. She has had no personal or family history of diabetes mellitus (DM), while random venous glucose, measured 1 week prior to hospitalisation, was 6.1 mmol/L. On admission, her HbA1c was 8.2% and anti-GAD antibodies were 12 kIU/L (0–5 kU/L), while islet cell antibodies and serum C-peptide were undetectable. Nivolumab was recommenced without the development of other immune-mediated phenomena until 6 months later, when she developed hypothyroidism with TSH 18 U/L and low free T4. She remains insulin dependent and has required levothyroxine replacement, while she has maintained good radiological and clinical response to immunotherapy. This case is notable for the rapidity of onset and profound nature of DKA at presentation, which occurred two months following commencement of immunotherapy. Despite the association of nivolumab with immune-mediated endocrinopathies, only a very small number of patients developing type 1 DM has been reported to date. Patients should be closely monitored for hyperglycaemia and thyroid dysfunction prior to and periodically during immunotherapy.
Learning points:
-
Nivolumab can induce fulminant type 1 diabetes, resulting in DKA.
-
Nivolumab is frequently associated with thyroid dysfunction, mostly hypothyroidism.
-
Nivolumab-treated patients should be monitored regularly for hyperglycaemia and thyroid dysfunction.
-
Clinicians should be aware and warn patients of potential signs and symptoms of severe hyperglycaemia.