Browse

You are looking at 1 - 3 of 3 items

Open access

Mara Ventura, Leonor Gomes, Joana Rosmaninho-Salgado, Luísa Barros, Isabel Paiva, Miguel Melo, Diana Oliveira and Francisco Carrilho

Summary

Intracranial germinomas are rare tumors affecting mostly patients at young age. Therefore, molecular data on its etiopathogenesis are scarce. We present a clinical case of a male patient of 25 years with an intracranial germinoma and a 16p11.2 microdeletion. His initial complaints were related to obesity, loss of facial hair and polydipsia. He also had a history of social-interaction difficulties during childhood. His blood tests were consistent with hypogonadotropic hypogonadism and secondary adrenal insufficiency, and he had been previously diagnosed with hypothyroidism. He also presented with polyuria and polydipsia and the water deprivation test confirmed the diagnosis of diabetes insipidus. His sellar magnetic resonance imaging (MRI) showed two lesions: one located in the pineal gland and other in the suprasellar region, both with characteristics suggestive of germinoma. Chromosomal microarray analysis was performed due to the association of obesity with social disability, and the result identified a 604 kb 16p11.2 microdeletion. The surgical biopsy confirmed the histological diagnosis of a germinoma. Pharmacological treatment with testosterone, hydrocortisone and desmopressin was started, and the patient underwent radiotherapy (40 Gy divided in 25 fractions). Three months after radiotherapy, a significant decrease in suprasellar and pineal lesions without improvement in pituitary hormonal deficiencies was observed. The patient is currently under follow-up. To the best of our knowledge, we describe the first germinoma in a patient with a 16p11.2 deletion syndrome, raising the question about the impact of this genetic alteration on tumorigenesis and highlighting the need of molecular analysis of germ cell tumors as only little is known about their genetic background.

Learning points:

  • Central nervous system germ cell tumors (CNSGTs) are rare intracranial tumors that affect mainly young male patients. They are typically located in the pineal and suprasellar regions and patients frequently present with symptoms of hypopituitarism.

  • The molecular pathology of CNSGTs is unknown, but it has been associated with gain of function of the KIT gene, isochromosome 12p amplification and a low DNA methylation.

  • Germinoma is a radiosensitive tumor whose diagnosis depends on imaging, tumor marker detection, surgical biopsy and cerebrospinal fluid cytology.

  • 16p11.2 microdeletion syndrome is phenotypically characterized by developmental delay, intellectual disability and autism spectrum disorders.

  • Seminoma, cholesteatoma, desmoid tumor, leiomyoma and Wilms tumor have been described in a few patients with 16p11.2 deletion.

  • Bifocal germinoma was identified in this patient with a 16p11.2 microdeletion syndrome, which represents a putative new association not previously reported in the literature.

Open access

Nandini Shankara Narayana, Anne-Maree Kean, Lisa Ewans, Thomas Ohnesorg, Katie L Ayers, Geoff Watson, Arthur Vasilaras, Andrew H Sinclair, Stephen M Twigg and David J Handelsman

Summary

46,XX disorders of sexual development (DSDs) occur rarely and result from disruptions of the genetic pathways underlying gonadal development and differentiation. We present a case of a young phenotypic male with 46,XX SRY-negative ovotesticular DSD resulting from a duplication upstream of SOX9 presenting with a painful testicular mass resulting from ovulation into an ovotestis. We present a literature review of ovulation in phenotypic men and discuss the role of SRY and SOX9 in testicular development, including the role of SOX9 upstream enhancer region duplication in female-to-male sex reversal.

Learning points:

  • In mammals, the early gonad is bipotent and can differentiate into either a testis or an ovary. SRY is the master switch in testis determination, responsible for differentiation of the bipotent gonad into testis.

  • SRY activates SOX9 gene, SOX9 as a transcription factor is the second major gene involved in male sex determination. SOX9 drives the proliferation of Sertoli cells and activates AMH/MIS repressing the ovary. SOX9 is sufficient to induce testis formation and can substitute for SRY function.

  • Assessing karyotype and then determination of the presence or absence of Mullerian structures are necessary serial investigations in any case of DSD, except for mixed gonadal dysgenesis identified by karyotype alone.

  • Treatment is ideal in a multidisciplinary setting with considerations to genetic (implications to family and reproductive recurrence risk), psychological aspects (sensitive individualized counseling including patient gender identity and preference), endocrinological (hormone replacement), surgical (cosmetic, prophylactic gonadectomy) fertility preservation and reproductive opportunities and metabolic health (cardiovascular and bones).

Open access

Ahmed Iqbal, Peter Novodvorsky, Alexandra Lubina-Solomon, Fiona M Kew and Jonathan Webster

Summary

Secondary amenorrhoea and galactorrhoea represent a common endocrine presentation. We report a case of an oestrogen-producing juvenile granulosa cell tumour (JGCT) of the ovary in a 16-year-old post-pubertal woman with hyperprolactinaemia amenorrhoea and galactorrhoea which resolved following surgical resection of the tumour. This patient presented with a 9-month history of secondary amenorrhoea and a 2-month history of galactorrhoea. Elevated serum prolactin at 7081 mIU/l and suppressed gonadotropins (LH <0.1 U/l; FSH <0.1 U/l) were detected. Serum oestradiol was significantly elevated at 7442 pmol/l with undetectable β-human chorionic gonadotropin. MRI showed a bulky pituitary with no visible adenoma. MRI of the abdomen showed a 4.8 cm mass arising from the right ovary with no evidence of metastatic disease. Serum inhibin B was elevated at 2735 ng/l. A right salpingo-oophorectomy was performed, and histology confirmed the diagnosis of a JGCT, stage International Federation of Gynaecology and Obstetrics 1A. Immunohistochemical staining for prolactin was negative. Post-operatively, oestrogen and prolactin levels were normalised, and she subsequently had a successful pregnancy. In summary, we present a case of an oestrogen-secreting JGCT with hyperprolactinaemia manifesting clinically with galactorrhoea and secondary amenorrhoea. We postulate that observed hyperprolactinaemia was caused by oestrogenic stimulation of pituitary lactotroph cells, a biochemical state analogous to pregnancy. To the best of our knowledge, this is the first report of hyperprolactinaemia as a result of excessive oestrogen production in the context of a JGCT.

Learning points

  • Hyperprolactinaemia with bilateral galactorrhoea and secondary amenorrhoea has a wide differential diagnosis and is not always caused by a prolactin secreting pituitary adenoma.

  • Significantly elevated serum oestradiol levels in the range seen in this case, in the absence of pregnancy, are indicative of an oestrogen-secreting tumour.

  • JGCTs are rare hormonally active ovarian neoplasms mostly secreting steroid hormones.

  • Serum inhibin can be used as a granulosa cell-specific tumour marker.

  • JGCTs have an excellent prognosis in the early stages of the disease.