Diagnosis and Treatment > Investigation > Lipid profile

You are looking at 1 - 3 of 3 items

Albert S Kim Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, New South Wales, Australia
The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia

Search for other papers by Albert S Kim in
Google Scholar
PubMed
Close
,
Rashida Hakeem Department of Maternal-Fetal Medicine, Westmead Institute for Maternal-Fetal Medicine, Westmead Hospital, Westmead, New South Wales, Australia

Search for other papers by Rashida Hakeem in
Google Scholar
PubMed
Close
,
Azaliya Abdullah Department of Maternal-Fetal Medicine, Westmead Institute for Maternal-Fetal Medicine, Westmead Hospital, Westmead, New South Wales, Australia

Search for other papers by Azaliya Abdullah in
Google Scholar
PubMed
Close
,
Amanda J Hooper School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia

Search for other papers by Amanda J Hooper in
Google Scholar
PubMed
Close
,
Michel C Tchan The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
Department of Genetic Medicine, Westmead Hospital, Westmead, New South Wales, Australia

Search for other papers by Michel C Tchan in
Google Scholar
PubMed
Close
,
Thushari I Alahakoon The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
Department of Maternal-Fetal Medicine, Westmead Institute for Maternal-Fetal Medicine, Westmead Hospital, Westmead, New South Wales, Australia

Search for other papers by Thushari I Alahakoon in
Google Scholar
PubMed
Close
, and
Christian M Girgis Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, New South Wales, Australia
The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
Department of Diabetes and Endocrinology, Royal North Shore Hospital, St Leonards, New South Wales, Australia

Search for other papers by Christian M Girgis in
Google Scholar
PubMed
Close

Summary

A 19-year-old female presented at 25-weeks gestation with pancreatitis. She was found to have significant hypertriglyceridaemia in context of an unconfirmed history of familial hypertriglyceridaemia. This was initially managed with fasting and insulin infusion and she was commenced on conventional interventions to lower triglycerides, including a fat-restricted diet, heparin, marine oil and gemfibrozil. Despite these measures, the triglyceride levels continued to increase as she progressed through the pregnancy, and it was postulated that she had an underlying lipoprotein lipase defect. Therefore, a multidisciplinary decision was made to commence therapeutic plasma exchange to prevent further episodes of pancreatitis. She underwent a total of 13 sessions of plasma exchange, and labour was induced at 37-weeks gestation in which a healthy female infant was delivered. There was a rapid and significant reduction in triglycerides in the 48 h post-delivery. Subsequent genetic testing of hypertriglyceridaemia genes revealed a missense mutation of the LPL gene. Fenofibrate and rosuvastatin was commenced to manage her hypertriglyceridaemia postpartum and the importance of preconception counselling for future pregnancies was discussed. Hormonal changes in pregnancy lead to an overall increase in plasma lipids to ensure adequate nutrient delivery to the fetus. These physiological changes become problematic, where a genetic abnormality in lipid metabolism exists and severe complications such as pancreatitis can arise. Available therapies for gestational hypertriglyceridaemia rely on augmentation of LPL activity. Where there is an underlying LPL defect, these therapies are ineffective and removal of triglyceride-rich lipoproteins via plasma exchange should be considered.

Learning points:

  • Hormonal changes in pregnancy, mediated by progesterone,oestrogen and human placental lactogen, lead to a two- to three-fold increase in serum triglyceride levels.

  • Pharmacological intervention for management of gestational hypertriglyceridaemia rely on the augmentation of lipoprotein lipase (LPL) activity to enhance catabolism of triglyceride-rich lipoproteins.

  • Genetic mutations affecting the LPL gene can lead to severe hypertriglyceridaemia.

  • Therapeutic plasma exchange (TPE) is an effective intervention for the management of severe gestational hypertriglyceridaemia and should be considered in cases where there is an underlying LPL defect.

  • Preconception counselling and discussion regarding contraception is of paramount importance in women with familial hypertriglyceridaemia.

Open access
Ahmad Haider Private Urology Practice, Bremerhaven, Germany

Search for other papers by Ahmad Haider in
Google Scholar
PubMed
Close
,
Karim S Haider Private Urology Practice, Bremerhaven, Germany

Search for other papers by Karim S Haider in
Google Scholar
PubMed
Close
, and
Farid Saad Global Medical Affairs Andrology, Bayer AG, Berlin, Germany
Research Department, Gulf Medical University, Ajman, UAE

Search for other papers by Farid Saad in
Google Scholar
PubMed
Close

Summary

In daily practice, clinicians are often confronted with obese type 2 diabetes mellitus (T2DM) patients for whom the treatment plan fails and who show an inadequate glycemic control and/or no sustainable weight loss. Untreated hypogonadism can be the reason for such treatment failure. This case describes the profound impact testosterone therapy can have on a male hypogonadal patient with metabolic syndrome, resulting in a substantial and sustained loss of body weight, pronounced improvement of all critical laboratory values and finally complete remission of diabetes.

Learning points:

  • Hypogonadism occurs frequently in men with T2DM.

  • In case of pronounced abdominal fat deposition and T2DM, the male patient should be evaluated for testosterone deficiency.

  • Untreated hypogonadism can complicate the successful treatment of patients with T2DM.

  • Under testosterone therapy, critical laboratory values are facilitated to return back to normal ranges and even complete remission of diabetes can be achieved.

Open access
Satoru Sakihara Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan

Search for other papers by Satoru Sakihara in
Google Scholar
PubMed
Close
,
Kazunori Kageyama Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan

Search for other papers by Kazunori Kageyama in
Google Scholar
PubMed
Close
,
Satoshi Yamagata Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan

Search for other papers by Satoshi Yamagata in
Google Scholar
PubMed
Close
,
Ken Terui Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan

Search for other papers by Ken Terui in
Google Scholar
PubMed
Close
,
Makoto Daimon Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan

Search for other papers by Makoto Daimon in
Google Scholar
PubMed
Close
, and
Toshihiro Suda Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan

Search for other papers by Toshihiro Suda in
Google Scholar
PubMed
Close

Summary

ACTH-dependent Cushing's syndrome includes Cushing's disease and ectopic ACTH syndrome (EAS). The differential diagnosis of Cushing's disease from EAS in cases of ACTH-dependent Cushing's syndrome is a challenging problem. We report here a case of EAS with an unknown source of ACTH secretion. Extensive imaging procedures, involving computed tomography (neck to pelvis), pituitary magnetic resonance imaging, and whole-body 18F-fluorodeoxyglucose-positron emission tomography, failed to reveal the source of ACTH secretion. Intermittent administration of bromocriptine, a short-acting and nonselective dopamine agonist, has afforded adequate suppression of plasma ACTH and cortisol levels over the long term.

Learning points

  • Tumor excision is the primary treatment for EAS. However, when surgery is impossible, medical therapy is needed to treat hypercortisolism.

  • In cases where the source of ACTH secretion is unknown, inhibitors of steroidogenesis, such as metyrapone, mitotane, ketoconazole, and etomidate, are mostly used to suppress cortisol secretion.

  • Medications that suppress ACTH secretion are less effective, therefore less popular, as standard treatments.

  • In the present case, short-term treatment with dopamine agonists was effective for the long-term suppression of both ACTH and cortisol levels.

Open access