Browse

You are looking at 1 - 5 of 5 items

Open access

Rémi Goupil, Martin Wolley, Jacobus Ungerer, Brett McWhinney, Kuniaki Mukai, Mitsuhide Naruse, Richard D Gordon and Michael Stowasser

Summary

In patients with primary aldosteronism (PA) undergoing adrenal venous sampling (AVS), cortisol levels are measured to assess lateralization of aldosterone overproduction. Concomitant adrenal autonomous cortisol and aldosterone secretion therefore have the potential to confound AVS results. We describe a case where metanephrine was measured during AVS to successfully circumvent this problem. A 55-year-old hypertensive male had raised plasma aldosterone/renin ratios and PA confirmed by fludrocortisone suppression testing. Failure of plasma cortisol to suppress overnight following dexamethasone and persistently suppressed corticotrophin were consistent with adrenal hypercortisolism. On AVS, comparison of adrenal and peripheral A/F ratios (left 5.7 vs peripheral 1.0; right 1.7 vs peripheral 1.1) suggested bilateral aldosterone production, with the left gland dominant but without contralateral suppression. However, using aldosterone/metanephrine ratios (left 9.7 vs peripheral 2.4; right 1.3 vs peripheral 2.5), aldosterone production lateralized to the left with good contralateral suppression. The patient underwent left laparoscopic adrenalectomy with peri-operative glucocorticoid supplementation to prevent adrenal insufficiency. Pathological examination revealed adrenal cortical adenomas producing both cortisol and aldosterone within a background of aldosterone-producing cell clusters. Hypertension improved and cured of PA and hypercortisolism were confirmed by negative post-operative fludrocortisone suppression and overnight 1 mg dexamethasone suppression testing. Routine dexamethasone suppression testing in patients with PA permits detection of concurrent hypercortisolism which can confound AVS results and cause unilateral PA to be misdiagnosed as bilateral with patients thereby denied potentially curative surgical treatment. In such patients, measurement of plasma metanephrine during AVS may overcome this issue.

Learning points

  • Simultaneous autonomous overproduction of cortisol and aldosterone is increasingly recognised although still apparently uncommon.

  • Because cortisol levels are used during AVS to correct for differences in dilution of adrenal with non-adrenal venous blood when assessing for lateralisation, unilateral cortisol overproduction with contralateral suppression could confound the interpretation of AVS results

  • Measuring plasma metanephrine during AVS to calculate lateralisation ratios may circumvent this problem.

Open access

V Larouche, L Snell and D V Morris

Summary

Myxoedema madness was first described as a consequence of severe hypothyroidism in 1949. Most cases were secondary to long-standing untreated primary hypothyroidism. We present the first reported case of iatrogenic myxoedema madness following radioactive iodine ablation for Graves' disease, with a second concurrent diagnosis of primary hyperaldosteronism. A 29-year-old woman presented with severe hypothyroidism, a 1-week history of psychotic behaviour and paranoid delusions 3 months after treatment with radioactive iodine ablation for Graves' disease. Her psychiatric symptoms abated with levothyroxine replacement. She was concurrently found to be hypertensive and hypokalemic. Primary hyperaldosteronism from bilateral adrenal hyperplasia was diagnosed. This case report serves as a reminder that myxoedema madness can be a complication of acute hypothyroidism following radioactive iodine ablation of Graves' disease and that primary hyperaldosteronism may be associated with autoimmune hyperthyroidism.

Learning points

  • Psychosis (myxoedema madness) can present as a neuropsychiatric manifestation of acute hypothyroidism following radioactive iodine ablation of Graves' disease.

  • Primary hyperaldosteronism may be caused by idiopathic bilateral adrenal hyperplasia even in the presence of an adrenal adenoma seen on imaging.

  • Adrenal vein sampling is a useful tool for differentiating between a unilateral aldosterone-producing adenoma, which is managed surgically, and an idiopathic bilateral adrenal hyperplasia, which is managed medically.

  • The management of autoimmune hyperthyroidism, iatrogenic hypothyroidism and primary hyperaldosteronism from bilateral idiopathic adrenal hyperplasia in patients planning pregnancy includes delaying pregnancy 6 months following radioactive iodine treatment and until patient is euthyroid for 3 months, using amiloride as opposed to spironolactone, controlling blood pressure with agents safe in pregnancy such as nifedipine and avoiding β blockers.

  • Autoimmune hyperthyroidism and primary hyperaldosteronism rarely coexist; any underlying mechanism associating the two is still unclear.

Open access

Gautam Das, Peter N Taylor, Arshiya Tabasum, L N Rao Bondugulapati, Danny Parker, Piero Baglioni, Onyebuchi E Okosieme and David Scott Coombes

Summary

Resistant hypertension is often difficult to treat and may be associated with underlying primary aldosteronism (PA). We describe the case of an elderly gentleman who presented with severe and resistant hypertension and was found to have a left adrenal incidentaloma during evaluation but had aldosterone excess secondary to unilateral adrenal hyperplasia (UAH) of the contralateral gland, which needed surgical intervention. A 65-year-old gentleman was evaluated for uncontrolled high blood pressure (BP) in spite of taking four antihypertensive medications. The high BP was confirmed on a 24-h ambulatory reading, and further biochemical evaluation showed an elevated serum aldosterone renin ratio (ARR) (1577 pmol/l per ng per ml per h). Radiological evaluation showed an adrenal nodule (15 mm) in the left adrenal gland but an adrenal vein sampling demonstrated a lateralization towards the opposite site favouring the right adrenal to be the source of excess aldosterone. A laparoscopic right adrenalectomy was performed and the histology of the gland confirmed nodular hyperplasia. Following surgery, the patient's BP improved remarkably although he remained on antihypertensives and under regular endocrine follow-up. PA remains the most common form of secondary and difficult-to-treat hypertension. Investigations may reveal incidental adrenal lesions, which may not be the actual source of excess aldosterone, but UAH may be a contributor and may coexist and amenable to surgical treatment. An adrenal vein sampling should be undertaken for correct lateralization of the source, otherwise a correctable diagnosis may be missed and the incorrect adrenal gland may be removed.

Learning points

  • Severe and resistant hypertension can often be associated with underlying PA.

  • ARR is an excellent screening tool in patients with suspected PA.

  • Lateralization with adrenal venous sampling is essential to isolate the source and differentiate between unilateral and bilateral causes of hyperaldosteronism.

  • Adrenal incidentalomas and UAH may coexist and the latter may often be the sole cause of excess aldosterone secretion.

  • Decisions about adrenalectomy should be made only after integrating and interpreting radiological and biochemical test findings properly.

Open access

A Tabasum, C Shute, D Datta and L George

Summary

Hypokalaemia may present as muscle cramps and Cardiac arrhythmias. This is a condition commonly encountered by endocrinologists and general physicians alike. Herein, we report the case of a 43-year-old gentleman admitted with hypokalaemia, who following subsequent investigations was found to have Gitelman's syndrome (GS). This rare, inherited, autosomal recessive renal tubular disorder is associated with genetic mutations in the thiazide-sensitive sodium chloride co-transporter and magnesium channels in the distal convoluted tubule. Patients with GS typically presents at an older age, and a spectrum of clinical presentations exists, from being asymptomatic to predominant muscular symptoms. Clinical suspicion should be raised in those with hypokalaemic metabolic alkalosis associated with hypomagnesaemia. Treatment of GS consists of long-term potassium and magnesium salt replacement. In general, the long-term prognosis in terms of preserved renal function and life expectancy is excellent. Herein, we discuss the biochemical imbalance in the aetiology of GS, and the case report highlights the need for further investigations in patients with recurrent hypokalaemic episodes.

Learning points

  • Recurrent hypokalaemia with no obvious cause warrants investigation for hereditary renal tubulopathies.

  • GS is the most common inherited renal tubulopathy with a prevalence of 25 per million people.

  • GS typically presents at an older age and clinical suspicion should be raised in those with hypokalaemic metabolic alkalosis associated with hypomagnesaemia.

  • Confirmation of diagnosis is by molecular analysis for mutation in the SLC12A3 gene.

Open access

Vivienne Yoon, Aliya Heyliger, Takashi Maekawa, Hironobu Sasano, Kelley Carrick, Stacey Woodruff, Jennifer Rabaglia, Richard J Auchus and Hans K Ghayee

Summary

Objective: To recognize that benign adrenal adenomas can co-secrete excess aldosterone and cortisol, which can change clinical management.

Methods: We reviewed the clinical and histological features of an adrenal tumor co-secreting aldosterone and cortisol in a patient. Biochemical testing as well as postoperative immunohistochemistry was carried out on tissue samples for assessing enzymes involved in steroidogenesis.

Results: A patient presented with hypertension, hypokalemia, and symptoms related to hypercortisolism. The case demonstrated suppressed renin concentrations with an elevated aldosterone:renin ratio, abnormal dexamethasone suppression test results, and elevated midnight salivary cortisol concentrations. The patient had a right adrenal nodule with autonomous cortisol production and interval growth. Right adrenalectomy was carried out. Postoperatively, the patient tolerated the surgery, but he was placed on a short course of steroid replacement given a subnormal postoperative serum cortisol concentration. Long-term follow-up of the patient showed that his blood pressure and glucose levels had improved. Histopathology slides showed positive staining for 3β-hydroxysteroid dehydrogenase, 11β-hydroxylase, and 21 hydroxylase.

Conclusion: In addition to the clinical manifestations and laboratory values, the presence of these enzymes in this type of tumor provides support that the tumor in this patient was able to produce mineralocorticoids and glucocorticoids. The recognition of patients with a tumor that is co-secreting aldosterone and cortisol can affect decisions to treat with glucocorticoids perioperatively to avoid adrenal crisis.

Learning points

  • Recognition of the presence of adrenal adenomas co-secreting mineralocorticoids and glucocorticoids.

  • Consideration for perioperative and postoperative glucocorticoid use in the treatment of co-secreting adrenal adenomas.