Diagnosis and Treatment > Investigation > Molecular genetic analysis

You are looking at 11 - 20 of 69 items

Nicholas J Theis Dunedin School of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand

Search for other papers by Nicholas J Theis in
Google Scholar
PubMed
Close
,
Toby Calvert Dunedin School of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand

Search for other papers by Toby Calvert in
Google Scholar
PubMed
Close
,
Peter McIntyre Women’s and Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand

Search for other papers by Peter McIntyre in
Google Scholar
PubMed
Close
,
Stephen P Robertson Women’s and Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand

Search for other papers by Stephen P Robertson in
Google Scholar
PubMed
Close
, and
Benjamin J Wheeler Women’s and Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand

Search for other papers by Benjamin J Wheeler in
Google Scholar
PubMed
Close

Summary

Cantu syndrome, or hypertrichotic osteochondrodysplasia, is a rare, autosomal dominant genetically heterogeneous disorder. It is characterized by hypertrichosis, cardiac and skeletal anomalies and distinctive coarse facial features. We report a case where slowed growth velocity at 13 years led to identification of multiple pituitary hormone deficiencies. This adds to other reports of pituitary abnormalities in this condition and supports inclusion of endocrine monitoring in the clinical surveillance of patients with Cantu syndrome.

Learning points:

  • Cantu syndrome is a rare genetic disorder caused by pathogenic variants in the ABCC9 and KCNJ8 genes, which result in gain of function of the SUR2 or Kir6.1 subunits of widely expressed KATP channels.

  • The main manifestations of the syndrome are varied, but most commonly include hypertrichosis, macrosomia, macrocephaly, coarse ‘acromegaloid’ facies, and a range of cardiac defects.

  • Anterior pituitary dysfunction may be implicated in this disorder, and we propose that routine screening should be included in the clinical and biochemical surveillance of patients with Cantu syndrome.

Open access
Sarah W Y Poon Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Sarah W Y Poon in
Google Scholar
PubMed
Close
,
Karen K Y Leung Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Karen K Y Leung in
Google Scholar
PubMed
Close
, and
Joanna Y L Tung Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Joanna Y L Tung in
Google Scholar
PubMed
Close

Summary

Severe hypertriglyceridemia is an endocrine emergency and is associated with acute pancreatitis and hyperviscosity syndrome. We describe an infant with lipoprotein lipase deficiency with severe hypertriglyceridemia who presented with acute pancreatitis. She was managed acutely with fasting and intravenous insulin infusion, followed by low-fat diet with no pharmacological agent. Subsequent follow-up until the age of 5 years showed satisfactory lipid profile and she has normal growth and development.

Learning points:

  • Hypertriglyceridemia-induced acute pancreatitis has significant morbidity and mortality, and prompt treatment is imperative.

  • When no secondary causes are readily identified, genetic evaluation should be pursued in hypertriglyceridemia in children.

  • Intravenous insulin is a safe and effective acute treatment for hypertriglyceridemia in children, even in infants.

  • Long-term management with dietary modifications alone could be effective for primary hypertriglyceridemia due to lipoprotein lipase deficiency, at least in early childhood phase.

Open access
Andrew R Tang Division of Endocrinology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada

Search for other papers by Andrew R Tang in
Google Scholar
PubMed
Close
,
Laura E Hinz Division of Endocrinology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada

Search for other papers by Laura E Hinz in
Google Scholar
PubMed
Close
,
Aneal Khan Department of Medical Genetics and Pediatrics, University of Calgary, Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada

Search for other papers by Aneal Khan in
Google Scholar
PubMed
Close
, and
Gregory A Kline Division of Endocrinology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada

Search for other papers by Gregory A Kline in
Google Scholar
PubMed
Close

Summary

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare, autosomal recessive disorder caused by mutations in the SLC34A3 gene that encodes the renal sodium-dependent phosphate cotransporter 2c (NaPi-IIc). It may present as intermittent mild hypercalcemia which may attract initial diagnostic attention but appreciation of concomitant hypophosphatemia is critical for consideration of the necessary diagnostic approach. A 21-year-old woman was assessed by adult endocrinology for low bone mass. She initially presented age two with short stature, nephrocalcinosis and mild intermittent hypercalcemia with hypercalciuria. She had no evidence of medullary sponge kidney or Fanconi syndrome and no bone deformities, pain or fractures. She had recurrent episodes of nephrolithiasis. In childhood, she was treated with hydrochlorothiazide to reduce urinary calcium. Upon review of prior investigations, she had persistent hypophosphatemia with phosphaturia, low PTH and a high-normal calcitriol. A diagnosis of HHRH was suspected and genetic testing confirmed a homozygous c.1483G>A (p.G495R) missense mutation of the SLC34A3 gene. She was started on oral phosphate replacement which normalized her serum phosphate, serum calcium and urine calcium levels over the subsequent 5 years. HHRH is an autosomal recessive condition that causes decreased renal reabsorption of phosphate, leading to hyperphosphaturia, hypophosphatemia and PTH-independent hypercalcemia due to the physiologic increase in calcitriol which also promotes hypercalciuria. Classically, patients present in childhood with bone pain, vitamin D-independent rickets and growth delay. This case of a SLC34A3 mutation illustrates the importance of investigating chronic hypophosphatemia even in the presence of other more common electrolyte abnormalities.

Learning points:

  • Hypophosphatemia is an important diagnostic clue that should not be ignored, even in the face of more common electrolyte disorders.

  • HHRH is a cause of PTH-independent hypophosphatemia that may also show hypercalcemia.

  • HHRH is a cause of hypophosphatemic nephrocalcinosis that should not be treated with calcitriol, unlike other congenital phosphate wasting syndromes.

  • Some congenital phosphate wasting disorders may not present until adolescence or early adulthood.

Open access
Daphne Yau Departments of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK

Search for other papers by Daphne Yau in
Google Scholar
PubMed
Close
,
Maria Salomon-Estebanez Departments of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK

Search for other papers by Maria Salomon-Estebanez in
Google Scholar
PubMed
Close
,
Amish Chinoy Departments of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK

Search for other papers by Amish Chinoy in
Google Scholar
PubMed
Close
,
John Grainger Departments of Paediatric Haematology, Royal Manchester Children’s Hospital, Manchester, UK

Search for other papers by John Grainger in
Google Scholar
PubMed
Close
,
Ross J Craigie Departments of Paediatric Surgery, Royal Manchester Children’s Hospital, Manchester, UK

Search for other papers by Ross J Craigie in
Google Scholar
PubMed
Close
,
Raja Padidela Departments of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK

Search for other papers by Raja Padidela in
Google Scholar
PubMed
Close
,
Mars Skae Departments of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK

Search for other papers by Mars Skae in
Google Scholar
PubMed
Close
,
Mark J Dunne Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK

Search for other papers by Mark J Dunne in
Google Scholar
PubMed
Close
,
Philip G Murray Departments of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK

Search for other papers by Philip G Murray in
Google Scholar
PubMed
Close
, and
Indraneel Banerjee Departments of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK

Search for other papers by Indraneel Banerjee in
Google Scholar
PubMed
Close

Summary

Congenital hyperinsulinism (CHI) is an important cause of severe hypoglycaemia in infancy. To correct hypoglycaemia, high concentrations of dextrose are often required through a central venous catheter (CVC) with consequent risk of thrombosis. We describe a series of six cases of CHI due to varying aetiologies from our centre requiring CVC for the management of hypoglycaemia, who developed thrombosis in association with CVC. We subsequently analysed the incidence and risk factors for CVC-associated thrombosis, as well as the outcomes of enoxaparin prophylaxis. The six cases occurred over a 3-year period; we identified an additional 27 patients with CHI who required CVC insertion during this period (n = 33 total), and a separate cohort of patients with CHI and CVC who received enoxaparin prophylaxis (n = 7). The incidence of CVC-associated thrombosis was 18% (6/33) over the 3 years, a rate of 4.2 thromboses/1000 CVC days. There was no difference in the frequency of genetic mutations or focal CHI in those that developed thromboses. However, compound heterozygous/homozygous potassium ATP channel mutations correlated with thrombosis (R 2 = 0.40, P = 0.001). No difference was observed in CVC duration, high concentration dextrose or glucagon infused through the CVC. In patients receiving enoxaparin prophylaxis, none developed thrombosis or bleeding complications. The characteristics of these patients did not differ significantly from those with thrombosis not on prophylaxis. We therefore conclude that CVC-associated thrombosis can occur in a significant proportion (18%) of patients with CHI, particularly in severe CHI, for which anticoagulant prophylaxis may be indicated.

Learning points:

  • CVC insertion is one of the most significant risk factors for thrombosis in the paediatric population.

  • Risk factors for CVC-associated thrombosis include increased duration of CVC placement, malpositioning and infusion of blood products.

  • To our knowledge, this is the first study to evaluate CVC-associated thrombosis in patients with congenital hyperinsulinism (CHI).

  • The incidence of CVC-associated thrombosis development is significant (18%) in CHI patients and higher compared to other neonates with CVC. CHI severity may be a risk factor for thrombosis development.

  • Although effective prophylaxis for CVC-associated thrombosis in infancy is yet to be established, our preliminary experience suggests the safety and efficacy of enoxoaparin prophylaxis in this population and requires on-going evaluation.

Open access
Gemma White Department of Endocrinology, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, UK

Search for other papers by Gemma White in
Google Scholar
PubMed
Close
,
Nicola Tufton Department of Endocrinology, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, UK

Search for other papers by Nicola Tufton in
Google Scholar
PubMed
Close
, and
Scott A Akker Department of Endocrinology, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, UK

Search for other papers by Scott A Akker in
Google Scholar
PubMed
Close

Summary

At least 40% of phaeochromocytomas and paraganglioma’s (PPGLs) are associated with an underlying genetic mutation. The understanding of the genetic landscape of these tumours has rapidly evolved, with 18 associated genes now identified. Among these, mutations in the subunits of succinate dehydrogenase complex (SDH) are the most common, causing around half of familial PPGL cases. Occurrence of PPGLs in carriers of SDHB, SDHC and SDHD subunit mutations has been long reported, but it is only recently that variants in the SDHA subunit have been linked to PPGL formation. Previously documented cases have, to our knowledge, only been found in isolated cases where pathogenic SDHA variants were identified retrospectively. We report the case of an asymptomatic suspected carotid body tumour found during surveillance screening in a 72-year-old female who is a known carrier of a germline SDHA pathogenic variant. To our knowledge, this is the first screen that detected PPGL found in a previously identified SDHA pathogenic variant carrier, during surveillance imaging. This finding supports the use of cascade genetic testing and surveillance screening in all carriers of a pathogenic SDHA variant.

Learning points:

  • SDH mutations are important causes of PPGL disease.

  • SDHA is much rarer compared to SDHB and SDHD mutations.

  • Pathogenicity and penetrance are yet to be fully determined in cases of SDHA-related PPGL.

  • Surveillance screening should be used for SDHA PPGL cases to identify recurrence, metastasis or metachronous disease.

  • Surveillance screening for SDH-related disease should be performed in identified carriers of a pathogenic SDHA variant.

Open access
Ved Bhushan Arya Department of Paediatric Endocrinology, Variety Club Children’s Hospital, King’s College Hospital NHS Foundation Trust, London, UK

Search for other papers by Ved Bhushan Arya in
Google Scholar
PubMed
Close
,
Jennifer Kalitsi Department of Paediatric Endocrinology, Variety Club Children’s Hospital, King’s College Hospital NHS Foundation Trust, London, UK

Search for other papers by Jennifer Kalitsi in
Google Scholar
PubMed
Close
,
Ann Hickey Department of Neonatology, King’s College Hospital NHS Foundation Trust, London, UK

Search for other papers by Ann Hickey in
Google Scholar
PubMed
Close
,
Sarah E Flanagan Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK

Search for other papers by Sarah E Flanagan in
Google Scholar
PubMed
Close
, and
Ritika R Kapoor Department of Paediatric Endocrinology, Variety Club Children’s Hospital, King’s College Hospital NHS Foundation Trust, London, UK

Search for other papers by Ritika R Kapoor in
Google Scholar
PubMed
Close

Summary

Diazoxide is the first-line treatment for patients with hyperinsulinaemic hypoglycaemia (HH). Approximately 50% of patients with HH are diazoxide resistant. However, marked diazoxide sensitivity resulting in severe hyperglycaemia is extremely uncommon and not reported previously in the context of HH due to HNF4A mutation. We report a novel observation of exceptional diazoxide sensitivity in a patient with HH due to HNF4A mutation. A female infant presented with severe persistent neonatal hypoglycaemia and was diagnosed with HH. Standard doses of diazoxide (5 mg/kg/day) resulted in marked hyperglycaemia (maximum blood glucose 21.6 mmol/L) necessitating discontinuation of diazoxide. Lower dose of diazoxide (1.5 mg/kg/day) successfully controlled HH in the proband, which was subsequently confirmed to be due to a novel HNF4A mutation. At 3 years of age, the patient maintains age appropriate fasting tolerance on low dose diazoxide (1.8 mg/kg/day) and has normal development. Diagnosis in proband’s mother and maternal aunt, both of whom carried HNF4A mutation and had been diagnosed with presumed type 1 and type 2 diabetes mellitus, respectively, was revised to maturity-onset diabetes of young (MODY). Proband’s 5-year-old maternal cousin, also carrier of HNF4A mutation, had transient neonatal hypoglycaemia. To conclude, patients with HH due to HNF4A mutation may require lower diazoxide than other group of patients with HH. Educating the families about the risk of marked hyperglycaemia with diazoxide is essential. The clinical phenotype of HNF4A mutation can be extremely variable.

Learning points:

  • Awareness of risk of severe hyperglycaemia with diazoxide is important and patients/families should be accordingly educated.

  • Some patients with HH due to HNF4A mutations may require lower than standard doses of diazoxide.

  • The clinical phenotype of HNF4A mutation can be extremely variable.

Open access
Aisling McCarthy University Hospital Galway, Galway, Ireland

Search for other papers by Aisling McCarthy in
Google Scholar
PubMed
Close
,
Sophie Howarth Department of Diabetes and Endocrinology, Cambridge University NHS Foundation Trust, Cambridge, UK

Search for other papers by Sophie Howarth in
Google Scholar
PubMed
Close
,
Serena Khoo Department of Diabetes and Endocrinology, Cambridge University NHS Foundation Trust, Cambridge, UK

Search for other papers by Serena Khoo in
Google Scholar
PubMed
Close
,
Julia Hale Department of Diabetes and Endocrinology, Cambridge University NHS Foundation Trust, Cambridge, UK

Search for other papers by Julia Hale in
Google Scholar
PubMed
Close
,
Sue Oddy Department of Clinical Biochemistry, Cambridge University NHS Foundation Trust, Cambridge, UK

Search for other papers by Sue Oddy in
Google Scholar
PubMed
Close
,
David Halsall Department of Clinical Biochemistry, Cambridge University NHS Foundation Trust, Cambridge, UK

Search for other papers by David Halsall in
Google Scholar
PubMed
Close
,
Brian Fish Department of Head and Neck Surgery, Cambridge University NHS Foundation Trust, Cambridge, UK

Search for other papers by Brian Fish in
Google Scholar
PubMed
Close
,
Sashi Mariathasan Department of Diabetes and Endocrinology, Cambridge University NHS Foundation Trust, Cambridge, UK

Search for other papers by Sashi Mariathasan in
Google Scholar
PubMed
Close
,
Katrina Andrews East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK

Search for other papers by Katrina Andrews in
Google Scholar
PubMed
Close
,
Samson O Oyibo Department of Diabetes and Endocrinology, Peterborough City Hospital, North West Anglia NHS Foundation Trust, Peterborough, UK

Search for other papers by Samson O Oyibo in
Google Scholar
PubMed
Close
,
Manjula Samyraju Department of Obstetrics and Gynecology, Peterborough City Hospital, North West Anglia NHS Foundation Trust, Peterborough, UK

Search for other papers by Manjula Samyraju in
Google Scholar
PubMed
Close
,
Katarzyna Gajewska-Knapik Department of Obstetrics and Gynecology, Cambridge University NHS Foundation Trust, Cambridge, UK

Search for other papers by Katarzyna Gajewska-Knapik in
Google Scholar
PubMed
Close
,
Soo-Mi Park East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK

Search for other papers by Soo-Mi Park in
Google Scholar
PubMed
Close
,
Diana Wood Department of Diabetes and Endocrinology, Cambridge University NHS Foundation Trust, Cambridge, UK

Search for other papers by Diana Wood in
Google Scholar
PubMed
Close
,
Carla Moran Department of Diabetes and Endocrinology, Cambridge University NHS Foundation Trust, Cambridge, UK

Search for other papers by Carla Moran in
Google Scholar
PubMed
Close
, and
Ruth T Casey Department of Diabetes and Endocrinology, Cambridge University NHS Foundation Trust, Cambridge, UK
Department of Medical Genetics, Cambridge University, Cambridge, UK

Search for other papers by Ruth T Casey in
Google Scholar
PubMed
Close

Summary

Primary hyperparathyroidism (PHPT) is characterised by the overproduction of parathyroid hormone (PTH) due to parathyroid hyperplasia, adenoma or carcinoma and results in hypercalcaemia and a raised or inappropriately normal PTH. Symptoms of hypercalcaemia occur in 20% of patients and include fatigue, nausea, constipation, depression, renal impairment and cardiac arrythmias. In the most severe cases, uraemia, coma or cardiac arrest can result. Primary hyperparathyroidism in pregnancy is rare, with a reported incidence of 1%. Maternal and fetal/neonatal complications are estimated to occur in 67 and 80% of untreated cases respectively. Maternal complications include nephrolithiasis, pancreatitis, hyperemesis gravidarum, pre-eclampsia and hypercalcemic crises. Fetal complications include intrauterine growth restriction; preterm delivery and a three to five-fold increased risk of miscarriage. There is a direct relationship between the degree of severity of hypercalcaemia and miscarriage risk, with miscarriage being more common in those patients with a serum calcium greater than 2.85 mmol/L. Neonatal complications include hypocalcemia. Herein, we present a case series of three women who were diagnosed with primary hyperparathyroidism in pregnancy. Case 1 was diagnosed with multiple endocrine neoplasia type 1 (MEN1) in pregnancy and required a bilateral neck exploration and subtotal parathyroidectomy in the second trimester of her pregnancy due to symptomatic severe hypercalcaemia. Both case 2 and case 3 were diagnosed with primary hyperparathyroidism due to a parathyroid adenoma and required a unilateral parathyroidectomy in the second trimester. This case series highlights the work-up and the tailored management approach to patients with primary hyperparathyroidism in pregnancy.

Learning points:

  • Primary hyperparathyroidism in pregnancy is associated with a high incidence of associated maternal fetal and neonatal complications directly proportionate to degree of maternal serum calcium levels.

  • Parathyroidectomy is the definitive treatment for primary hyperparathyroidism in pregnancy and was used in the management of all three cases in this series. It is recommended when serum calcium is persistently greater than 2.75 mmol/L and or for the management of maternal or fetal complications of hypercalcaemia. Surgical management, when necessary is ideally performed in the second trimester.

  • Primary hyperparathyroidism is genetically determined in ~10% of cases, where the likelihood is increased in those under 40 years, where there is relevant family history and those with other related endocrinopathies. Genetic testing is a useful diagnostic adjunct and can guide treatment and management options for patients diagnosed with primary hyperparathyroidism in pregnancy, as described in case 1 in this series, who was diagnosed with MEN1 syndrome.

  • Women of reproductive age with primary hyperparathyroidism need to be informed of the risks and complications associated with primary hyperparathyroidism in pregnancy and pregnancy should be deferred and or avoided until curative surgery has been performed and calcium levels have normalised.

Open access
Yang Timothy Du Endocrine and Metabolic Unit, Royal Adelaide Hospital

Search for other papers by Yang Timothy Du in
Google Scholar
PubMed
Close
,
Lynette Moore School of Medicine, University of Adelaide
SA Pathology, Women’s and Children’s Hospital

Search for other papers by Lynette Moore in
Google Scholar
PubMed
Close
,
Nicola K Poplawski Adult Genetics Unit, Royal Adelaide Hospital

Search for other papers by Nicola K Poplawski in
Google Scholar
PubMed
Close
, and
Sunita M C De Sousa Endocrine and Metabolic Unit, Royal Adelaide Hospital
School of Medicine, University of Adelaide
Adult Genetics Unit, Royal Adelaide Hospital
Center for Cancer Biology, SA Pathology and University of South Australia Alliance, Adelaide, South Australia, Australia

Search for other papers by Sunita M C De Sousa in
Google Scholar
PubMed
Close

Summary

A 26-year-old man presented with a combination of permanent neonatal diabetes due to pancreatic aplasia, complex congenital heart disease, central hypogonadism and growth hormone deficiency, structural renal abnormalities with proteinuria, umbilical hernia, neurocognitive impairment and dysmorphic features. His older brother had diabetes mellitus due to pancreatic hypoplasia, complex congenital heart disease, hypospadias and umbilical hernia. Their father had an atrial septal defect, umbilical hernia and diabetes mellitus diagnosed incidentally in adulthood on employment screening. The proband’s paternal grandmother had a congenital heart defect. Genetic testing of the proband revealed a novel heterozygous missense variant (Chr18:g.19761441T>C, c.1330T>C, p.Cys444Arg) in exon 4 of GATA6, which is class 5 (pathogenic) using American College of Medical Genetics and Genomics guidelines and is likely to account for his multisystem disorder. The same variant was detected in his brother and father, but not his paternal grandmother. This novel variant of GATA6 likely occurred de novo in the father with autosomal dominant inheritance in the proband and his brother. The case is exceptional as very few families with monogenic diabetes due to GATA6 mutations have been reported to date and we describe a new link between GATA6 and renal pathology.

Learning points:

  • Monogenic diabetes should be suspected in patients presenting with syndromic features, multisystem congenital disease, neonatal-onset diabetes and/or a suggestive family history.

  • Recognition and identification of genetic diabetes may improve patient understanding and empowerment and allow for better tailored management.

  • Identification of a genetic disorder may have important implications for family planning.

Open access
Ana Gonçalves Ferreira Endocrinology and Diabetes Department, Garcia de Orta Hospital, Almada, Portugal

Search for other papers by Ana Gonçalves Ferreira in
Google Scholar
PubMed
Close
,
Tiago Nunes da Silva Endocrinology Department, Portuguese Institute of Oncology Francisco Gentil, Lisbon, Portugal

Search for other papers by Tiago Nunes da Silva in
Google Scholar
PubMed
Close
,
Sofia Alegria Cardiology Department, Garcia de Orta Hospital, Almada, Portugal

Search for other papers by Sofia Alegria in
Google Scholar
PubMed
Close
,
Maria Carlos Cordeiro Endocrinology and Diabetes Department, Garcia de Orta Hospital, Almada, Portugal

Search for other papers by Maria Carlos Cordeiro in
Google Scholar
PubMed
Close
, and
Jorge Portugal Endocrinology and Diabetes Department, Garcia de Orta Hospital, Almada, Portugal

Search for other papers by Jorge Portugal in
Google Scholar
PubMed
Close

Summary

Pheochromocytoma/paraganglioma (PPGL) are neuroendocrine tumors that can secrete catecholamines. The authors describe a challenging case who presented as stress cardiomyopathy and myocardial infarction (MI). A 76-year-old man, with a medical history of Parkinson’s disease, type 2 diabetes mellitus, hypertension, dyslipidaemia and a previous inferior MI in 2001, presented to the emergency department due to chest pain, headaches and vomiting. He also reported worsening blood glucose levels and increasing constipation over the preceding weeks. BP was 185/89 mmHg (no other relevant findings). EKG had ST segment depression in leads V2-V6, T troponin was 600 ng/L (<14) and the echocardiogram showed left ventricular hypokinesia with mildly compromised systolic function. Nevertheless, he rapidly progressed to severe biventricular dysfunction. Coronary angiogram showed a 90% anterior descendent coronary artery occlusion (already present in 2001), which was treated with angioplasty/stenting. In the following days, a very labile BP profile and unexplained sinus tachycardia episodes were observed. Because of sustained severe constipation, the patient underwent an abdominal CT that revealed a retroperitoneal, heterogeneous, hypervascular mass on the right (62 × 35 mm), most likely a paraganglioma. Urinary metanephrines were increased several fold. 68Ga-DOTANOC PET-CT scan showed increased uptake in the abdominal mass (no evidence of disease elsewhere). He was started on a calcium-channel blocker and alpha blockade and underwent surgery with no major complications. Eight months after surgery, the patient has no evidence of disease. Genetic testing was negative for known germline mutations. This was a challenging diagnosis, but it was essential for adequate cardiovascular stabilization and to reduce further morbidity.

Learning points:

  • PPGL frequently produces catecholamines and can manifest with several cardiovascular syndromes, including stress cardiomyopathy and myocardial infarction.

  • Even in the presence of coronary artery disease (CAD), PPGL should be suspected if signs or symptoms attributed to catecholamine excess are present (in this case, high blood pressure, worsening hyperglycaemia and constipation).

  • Establishing the correct diagnosis is important for adequate treatment choice.

  • Inodilators and mechanical support might be preferable options (if available) for cardiovascular stabilization prior to alpha blockade and surgery.

  • Laboratory interference should be suspected irrespective of metanephrine levels, especially in the context of treated Parkinson’s disease.

Open access
Catherine D Zhang Departments of Internal Medicine, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA

Search for other papers by Catherine D Zhang in
Google Scholar
PubMed
Close
,
Pavel N Pichurin Departments of Clinical Genomics, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA

Search for other papers by Pavel N Pichurin in
Google Scholar
PubMed
Close
,
Aleh Bobr Departments of Laboratory Medicine and Pathology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA

Search for other papers by Aleh Bobr in
Google Scholar
PubMed
Close
,
Melanie L Lyden Departments of Surgery, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA

Search for other papers by Melanie L Lyden in
Google Scholar
PubMed
Close
,
William F Young Jr Departments of Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA

Search for other papers by William F Young Jr in
Google Scholar
PubMed
Close
, and
Irina Bancos Departments of Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA

Search for other papers by Irina Bancos in
Google Scholar
PubMed
Close

Summary

Carney complex (CNC) is a rare multiple neoplasia syndrome characterized by spotty pigmentation of the skin and mucosa in association with various non-endocrine and endocrine tumors, including primary pigmented nodular adrenocortical disease (PPNAD). A 20-year-old woman was referred for suspected Cushing syndrome. She had signs of cortisol excess as well as skin lentigines on physical examination. Biochemical investigation was suggestive of corticotropin (ACTH)-independent Cushing syndrome. Unenhanced computed tomography scan of the abdomen did not reveal an obvious adrenal mass. She subsequently underwent bilateral laparoscopic adrenalectomy, and histopathology was consistent with PPNAD. Genetic testing revealed a novel frameshift pathogenic variant c.488delC/p.Thr163MetfsX2 (ClinVar Variation ID: 424516) in the PRKAR1A gene, consistent with clinical suspicion for CNC. Evaluation for other clinical features of the complex was unrevealing. We present a case of PPNAD-associated Cushing syndrome leading to the diagnosis of CNC due to a novel PRKAR1A pathogenic variant.

Learning points:

  • PPNAD should be considered in the differential for ACTH-independent Cushing syndrome, especially when adrenal imaging appears normal.

  • The diagnosis of PPNAD should prompt screening for CNC.

  • CNC is a rare multiple neoplasia syndrome caused by inactivating pathogenic variants in the PRKAR1A gene.

  • Timely diagnosis of CNC and careful surveillance can help prevent potentially fatal complications of the disease.

Open access