Diagnosis and Treatment > Investigation > Molecular genetic analysis
You are looking at 21 - 30 of 69 items
Search for other papers by Saurabh Uppal in
Google Scholar
PubMed
Search for other papers by James Blackburn in
Google Scholar
PubMed
Search for other papers by Mohammed Didi in
Google Scholar
PubMed
Search for other papers by Rajeev Shukla in
Google Scholar
PubMed
Search for other papers by James Hayden in
Google Scholar
PubMed
Institute of Child Health, University of Liverpool, Liverpool, UK
Search for other papers by Senthil Senniappan in
Google Scholar
PubMed
Summary
Beckwith–Wiedemann syndrome (BWS) can be associated with embryonal tumours and congenital hyperinsulinism (CHI). We present an infant with BWS who developed congenital hepatoblastoma and Wilms’ tumour during infancy. The infant presented with recurrent hypoglycaemia requiring high intravenous glucose infusion and was biochemically confirmed to have CHI. He was resistant to diazoxide but responded well to octreotide and was switched to Lanreotide at 1 year of age. Genetic analysis for mutations of ABCC8 and KCNJ11 were negative. He had clinical features suggestive of BWS. Methylation-sensitive multiplex ligation-dependent probe amplification revealed hypomethylation at KCNQ1OT1:TSS-DMR and hypermethylation at H19 /IGF2:IG-DMR consistent with mosaic UPD(11p15). Hepatoblastoma was detected on day 4 of life, which was resistant to chemotherapy, requiring surgical resection. He developed Wilms’ tumour at 3 months of age, which also showed poor response to induction chemotherapy with vincristine and actinomycin D. Surgical resection of Wilms’ tumour was followed by post-operative chemotherapy intensified with cycles containing cyclophosphamide, doxorubicin, carboplatin and etoposide, in addition to receiving flank radiotherapy. We report, for the first time, an uncommon association of hepatoblastoma and Wilms’ tumour in BWS in early infancy. Early onset tumours may show resistance to chemotherapy. UPD(11p15) is likely associated with persistent CHI in BWS.
Learning points:
-
Long-acting somatostatin analogues are effective in managing persistent CHI in BWS.
-
UPD(11)pat genotype may be a pointer to persistent and severe CHI.
-
Hepatoblastoma and Wilms’ tumour may have an onset within early infancy and early tumour surveillance is essential.
-
Tumours associated with earlier onset may be resistant to recognised first-line chemotherapy.
Department of Endocrinology, Royal Hospital for Sick Children, Edinburgh, UK
Search for other papers by Sarah Kiff in
Google Scholar
PubMed
Search for other papers by Carolyn Babb in
Google Scholar
PubMed
Genetics and Genomic Medicine Programme, Great Institute of Child Health, University College London, London, UK
Search for other papers by Maria Guemes in
Google Scholar
PubMed
Search for other papers by Antonia Dastamani in
Google Scholar
PubMed
Search for other papers by Clare Gilbert in
Google Scholar
PubMed
Search for other papers by Sarah E Flanagan in
Google Scholar
PubMed
Search for other papers by Sian Ellard in
Google Scholar
PubMed
Search for other papers by John Barton in
Google Scholar
PubMed
Genetics and Genomic Medicine Programme, Great Institute of Child Health, University College London, London, UK
Search for other papers by M Dattani in
Google Scholar
PubMed
Genetics and Genomic Medicine Programme, Great Institute of Child Health, University College London, London, UK
Search for other papers by Pratik Shah in
Google Scholar
PubMed
Summary
We report a case of partial diazoxide responsiveness in a child with severe congenital hyperinsulinaemic hypoglycaemia (CHI) due to a homozygous ABCC8 mutation. A term baby, with birth weight 3.8 kg, born to consanguineous parents presented on day 1 of life with hypoglycaemia. Hypoglycaemia screen confirmed CHI. Diazoxide was commenced on day 7 due to ongoing elevated glucose requirements (15 mg/kg/min), but despite escalation to a maximum dose (15 mg/kg/day), intravenous (i.v.) glucose requirement remained high (13 mg/kg/min). Genetic testing demonstrated a homozygous ABCC8 splicing mutation (c.2041-1G>C), consistent with a diffuse form of CHI. Diazoxide treatment was therefore stopped and subcutaneous (s.c.) octreotide infusion commenced. Despite this, s.c. glucagon and i.v. glucose were required to prevent hypoglycaemia. A trial of sirolimus and near-total pancreatectomy were considered, however due to the significant morbidity potentially associated with these, a further trial of diazoxide was commenced at 1.5 months of age. At a dose of 10 mg/kg/day of diazoxide and 40 µg/kg/day of octreotide, both i.v. glucose and s.c. glucagon were stopped as normoglycaemia was achieved. CHI due to homozygous ABCC8 mutation poses management difficulties if the somatostatin analogue octreotide is insufficient to prevent hypoglycaemia. Diazoxide unresponsiveness is often thought to be a hallmark of recessively inherited ABCC8 mutations. This patient was initially thought to be non-responsive, but this case highlights that a further trial of diazoxide is warranted, where other available treatments are associated with significant risk of morbidity.
Learning points:
-
Homozygous ABCC8 mutations are commonly thought to cause diazoxide non-responsive hyperinsulinaemic hypoglycaemia.
-
This case highlights that partial diazoxide responsiveness in homozygous ABCC8 mutations may be present.
-
Trial of diazoxide treatment in combination with octreotide is warranted prior to considering alternative treatments, such as sirolimus or near-total pancreatectomy, which are associated with more significant side effects.
Search for other papers by Mara Ventura in
Google Scholar
PubMed
Search for other papers by Leonor Gomes in
Google Scholar
PubMed
Search for other papers by Joana Rosmaninho-Salgado in
Google Scholar
PubMed
Search for other papers by Luísa Barros in
Google Scholar
PubMed
Search for other papers by Isabel Paiva in
Google Scholar
PubMed
Search for other papers by Miguel Melo in
Google Scholar
PubMed
Search for other papers by Diana Oliveira in
Google Scholar
PubMed
Search for other papers by Francisco Carrilho in
Google Scholar
PubMed
Summary
Intracranial germinomas are rare tumors affecting mostly patients at young age. Therefore, molecular data on its etiopathogenesis are scarce. We present a clinical case of a male patient of 25 years with an intracranial germinoma and a 16p11.2 microdeletion. His initial complaints were related to obesity, loss of facial hair and polydipsia. He also had a history of social-interaction difficulties during childhood. His blood tests were consistent with hypogonadotropic hypogonadism and secondary adrenal insufficiency, and he had been previously diagnosed with hypothyroidism. He also presented with polyuria and polydipsia and the water deprivation test confirmed the diagnosis of diabetes insipidus. His sellar magnetic resonance imaging (MRI) showed two lesions: one located in the pineal gland and other in the suprasellar region, both with characteristics suggestive of germinoma. Chromosomal microarray analysis was performed due to the association of obesity with social disability, and the result identified a 604 kb 16p11.2 microdeletion. The surgical biopsy confirmed the histological diagnosis of a germinoma. Pharmacological treatment with testosterone, hydrocortisone and desmopressin was started, and the patient underwent radiotherapy (40 Gy divided in 25 fractions). Three months after radiotherapy, a significant decrease in suprasellar and pineal lesions without improvement in pituitary hormonal deficiencies was observed. The patient is currently under follow-up. To the best of our knowledge, we describe the first germinoma in a patient with a 16p11.2 deletion syndrome, raising the question about the impact of this genetic alteration on tumorigenesis and highlighting the need of molecular analysis of germ cell tumors as only little is known about their genetic background.
Learning points:
-
Central nervous system germ cell tumors (CNSGTs) are rare intracranial tumors that affect mainly young male patients. They are typically located in the pineal and suprasellar regions and patients frequently present with symptoms of hypopituitarism.
-
The molecular pathology of CNSGTs is unknown, but it has been associated with gain of function of the KIT gene, isochromosome 12p amplification and a low DNA methylation.
-
Germinoma is a radiosensitive tumor whose diagnosis depends on imaging, tumor marker detection, surgical biopsy and cerebrospinal fluid cytology.
-
16p11.2 microdeletion syndrome is phenotypically characterized by developmental delay, intellectual disability and autism spectrum disorders.
-
Seminoma, cholesteatoma, desmoid tumor, leiomyoma and Wilms tumor have been described in a few patients with 16p11.2 deletion.
-
Bifocal germinoma was identified in this patient with a 16p11.2 microdeletion syndrome, which represents a putative new association not previously reported in the literature.
Search for other papers by Matthieu St-Jean in
Google Scholar
PubMed
Search for other papers by Jessica MacKenzie-Feder in
Google Scholar
PubMed
Search for other papers by Isabelle Bourdeau in
Google Scholar
PubMed
Search for other papers by André Lacroix in
Google Scholar
PubMed
Summary
A 29-year-old G4A3 woman presented at 25 weeks of pregnancy with progressive signs of Cushing’s syndrome (CS), gestational diabetes requiring insulin and hypertension. A 3.4 × 3.3 cm right adrenal adenoma was identified during abdominal ultrasound imaging for nephrolithiasis. Investigation revealed elevated levels of plasma cortisol, 24 h urinary free cortisol (UFC) and late-night salivary cortisol (LNSC). Serum ACTH levels were not fully suppressed (4 and 5 pmol/L (N: 2–11)). One month post-partum, CS regressed, 24-h UFC had normalised while ACTH levels were now less than 2 pmol/L; however, dexamethasone failed to suppress cortisol levels. Tests performed in vivo 6 weeks post-partum to identify aberrant hormone receptors showed no cortisol stimulation by various tests (including 300 IU hLH i.v.) except after administration of 250 µg i.v. Cosyntropin 1–24. Right adrenalectomy demonstrated an adrenocortical adenoma and atrophy of adjacent cortex. Quantitative RT-PCR analysis of the adenoma revealed the presence of ACTH (MC2) receptor mRNA, while LHCG receptor mRNA was almost undetectable. This case reveals that CS exacerbation in the context of pregnancy can result from the placental-derived ACTH stimulation of MC2 receptors on the adrenocortical adenoma. Possible contribution of other placental-derived factors such as oestrogens, CRH or CRH-like peptides cannot be ruled out.
Learning points:
-
Diagnosis of Cushing’s syndrome during pregnancy is complicated by several physiological alterations in hypothalamic–pituitary–adrenal axis regulation occurring in normal pregnancy.
-
Cushing’s syndrome (CS) exacerbation during pregnancy can be associated with aberrant expression of LHCG receptor on primary adrenocortical tumour or hyperplasia in some cases, but not in this patient.
-
Placental-derived ACTH, which is not subject to glucocorticoid negative feedback, stimulated cortisol secretion from this adrenal adenoma causing transient CS exacerbation during pregnancy.
-
Following delivery and tumour removal, suppression of HPA axis can require several months to recover and requires glucocorticoid replacement therapy.
Search for other papers by Maria P Yavropoulou in
Google Scholar
PubMed
Search for other papers by Efstathios Chronopoulos in
Google Scholar
PubMed
Search for other papers by George Trovas in
Google Scholar
PubMed
Search for other papers by Emmanouil Avramidis in
Google Scholar
PubMed
Search for other papers by Francesca Marta Elli in
Google Scholar
PubMed
Search for other papers by Giovanna Mantovani in
Google Scholar
PubMed
Search for other papers by Pantelis Zebekakis in
Google Scholar
PubMed
Search for other papers by John G Yovos in
Google Scholar
PubMed
Summary
Pseudohypoparathyroidism (PHP) is a heterogeneous group of rare endocrine disorders characterised by normal renal function and renal resistance to the action of the parathyroid hormone. Type 1A (PHP1A), which is the most common variant, also include developmental and skeletal defects named as Albright hereditary osteodystrophy (AHO). We present two cases, a 54- and a 33-year-old male diagnosed with PHP who were referred to us for persistently high levels of serum calcitonin. AHO and multinodular goitre were present in the 54-year-old male, while the second patient was free of skeletal deformities and his thyroid gland was of normal size and without nodular appearance. We performed GNAS molecular analysis (methylation status and copy number analysis by MS-MLPA) in genomic DNA samples for both patients. The analysis revealed a novel missense variant c.131T>G p.(Leu44Pro) affecting GNAS exon 1, in the patient with the clinical diagnosis of PHP1A. This amino acid change appears to be in accordance with the clinical diagnosis of the patient. The genomic DNA analysis of the second patient revealed the presence of the recurrent 3-kb deletion affecting the imprinting control region localised in the STX16 region associated with the loss of methylation (LOM) at the GNAS A/B differentially methylated region and consistent with the diagnosis of an autosomal dominant form of PHP type 1B (PHP1B). In conclusion, hypercalcitoninaemia may be encountered in PHP1A and PHP1B even in the absence of thyroid pathology.
Learning points:
-
We describe a novel missense variant c.131T>G p.(Leu44Pro) affecting GNAS exon 1 as the cause of PHP1A.
-
Hypercalcitoninaemia in PHP1A is considered an associated resistance to calcitonin, as suggested by the generalised impairment of Gsα-mediated hormone signalling.
-
GNAS methylation defects, as in type PHP1B, without thyroid pathology can also present with hypercalcitoninaemia.
Search for other papers by Aoife Garrahy in
Google Scholar
PubMed
Search for other papers by Matilde Bettina Mijares Zamuner in
Google Scholar
PubMed
Search for other papers by Maria M Byrne in
Google Scholar
PubMed
Summary
Coexistence of autoimmune diabetes and maturity-onset diabetes of the young (MODY) is rare. We report the first case of coexisting latent autoimmune diabetes of adulthood (LADA) and glucokinase (GCK) MODY. A 32-year-old woman was treated with insulin for gestational diabetes at age 32 years; post-partum, her fasting blood glucose was 6.0 mmol/L and 2-h glucose was 11.8 mmol/L following an oral glucose tolerance test, and she was maintained on diet alone. Five years later, a diagnosis of LADA was made when she presented with fasting blood glucose of 20.3 mmol/L and HbA1C 125 mmol/mol (13.6%). GCK-MODY was identified 14 years later when genetic testing was prompted by identification of a mutation in her cousin. Despite multiple daily insulin injections her glycaemic control remained above target and her clinical course has been complicated by multiple episodes of hypoglycaemia with unawareness. Although rare, coexistence of latent autoimmune diabetes of adulthood and monogenic diabetes should be considered if there is a strong clinical suspicion, for example, family history. Hypoglycaemic unawareness developed secondary to frequent episodes of hypoglycaemia using standard glycaemic targets for LADA. This case highlights the importance of setting fasting glucose targets within the expected range for GCK-MODY in subjects with coexisting LADA.
Learning points:
-
We report the first case of coexisting latent autoimmune diabetes of adulthood (LADA) and GCK-MODY.
-
It has been suggested that mutations in GCK may lead to altered counter-regulation and recognition of hypoglycaemia at higher blood glucose levels than patients without such mutation. However, in our case, hypoglycaemic unawareness developed secondary to frequent episodes of hypoglycaemia using standard glycaemic targets for LADA.
-
This case highlights the importance of setting fasting glucose targets within the expected range for GCK-MODY in subjects with coexisting LADA to avoid hypoglycaemia.
Search for other papers by Priya Vaidyanathan in
Google Scholar
PubMed
Search for other papers by Paul Kaplowitz in
Google Scholar
PubMed
Summary
Pubertal gynecomastia is common, can be seen in 65% of the adolescent boys and is considered physiological. It is thought to be due to transient imbalance between the ratio of testosterone and estradiol in the early stages of puberty. It resolves in 1–2 years and requires no treatment. However, more persistent and severe pubertal gynecomastia is less common and can be associated with pathological disorders. These can be due to diminished androgen production, increased estrogen production or androgen resistance. We report a case of persistent pubertal gynecomastia due to partial androgen insensitivity syndrome (PAIS), classical hormone findings and a novel mutation in the androgen receptor (AR) gene.
Learning points:
-
Laboratory testing of follicle-stimulating hormone (FSH), leutinizing hormone (LH) and testosterone for pubertal gynecomastia is most helpful in the setting of undervirization.
-
The hormonal finding of very high testosterone, elevated LH and estradiol and relatively normal FSH are classical findings of PAIS.
-
Gynecomastia due to PAIS will not resolve and surgery for breast reduction should be recommended.
Search for other papers by Alejandro García-Castaño in
Google Scholar
PubMed
Hospital Universitario Cruces, UPV/EHU, Barakaldo, Spain
Search for other papers by Leire Madariaga in
Google Scholar
PubMed
Search for other papers by Sharona Azriel in
Google Scholar
PubMed
Hospital Universitario Cruces, UPV/EHU, Barakaldo, Spain
Search for other papers by Gustavo Pérez de Nanclares in
Google Scholar
PubMed
Search for other papers by Idoia Martínez de LaPiscina in
Google Scholar
PubMed
Search for other papers by Rosa Martínez in
Google Scholar
PubMed
Search for other papers by Inés Urrutia in
Google Scholar
PubMed
Hospital Universitario Cruces, UPV/EHU, Barakaldo, Spain
Search for other papers by Aníbal Aguayo in
Google Scholar
PubMed
Hospital Universitario Cruces, UPV/EHU, Barakaldo, Spain
Search for other papers by Sonia Gaztambide in
Google Scholar
PubMed
Hospital Universitario Cruces, UPV/EHU, Barakaldo, Spain
Search for other papers by Luis Castaño in
Google Scholar
PubMed
Summary
Familial hypocalciuric hypercalcemia type I is an autosomal dominant disorder caused by heterozygous loss-of-function mutations in the CASR gene and is characterized by moderately elevated serum calcium concentrations, low urinary calcium excretion and inappropriately normal or mildly elevated parathyroid hormone (PTH) concentrations. We performed a clinical and genetic characterization of one patient suspected of familial hypocalciuric hypercalcemia type I. Patient presented persistent hypercalcemia with normal PTH and 25-hydroxyvitamin D levels. The CASR was screened for mutations by PCR followed by direct Sanger sequencing and, in order to detect large deletions or duplications, multiplex ligation-dependent probe amplification (MLPA) was used. One large deletion of 973 nucleotides in heterozygous state (c.1733-255_2450del) was detected. This is the first large deletion detected by the MLPA technique in the CASR gene.
Learning points:
-
Molecular studies are important to confirm the differential diagnosis of FHH from primary hyperparathyroidism.
-
Large deletions or duplications in the CASR gene can be detected by the MLPA technique.
-
Understanding the functional impact of the mutations is critical for leading pharmacological research and could facilitate the therapy of patients.
Search for other papers by Ohoud Al Mohareb in
Google Scholar
PubMed
Search for other papers by Mussa H Al Malki in
Google Scholar
PubMed
Search for other papers by O Thomas Mueller in
Google Scholar
PubMed
Search for other papers by Imad Brema in
Google Scholar
PubMed
Summary
Resistance to thyroid hormone-beta (RTHbeta) is a rare inherited syndrome characterized by variable reduced tissue responsiveness to the intracellular action of triiodothyronine (T3), the active form of the thyroid hormone. The presentation of RTHbeta is quite variable and mutations in the thyroid hormone receptor beta (THR-B) gene have been detected in up to 90% of patients. The proband was a 34-year-old Jordanian male who presented with intermittent palpitations. His thyroid function tests (TFTs) showed a discordant profile with high free T4 (FT4) at 45.7 pmol/L (normal: 12–22), high free T3 (FT3) at 11.8 pmol/L (normal: 3.1–6.8) and inappropriately normal TSH at 3.19 mIU/L (normal: 0.27–4.2). Work up has confirmed normal alpha subunit of TSH of 0.1 ng/mL (normal <0.5) and pituitary MRI showed no evidence of a pituitary adenoma; however, there was an interesting coincidental finding of partially empty sella. RTHbeta was suspected and genetic testing confirmed a known mutation in the THR-B gene, where a heterozygous A to G base change substitutes valine for methionine at codon 310. Screening the immediate family revealed that the eldest son (5 years old) also has discordant thyroid function profile consistent with RTHbeta and genetic testing confirmed the same M310V mutation that his father harbored. Moreover, the 5-year-old son had hyperactivity, impulsivity and aggressive behavior consistent with attention deficit hyperactivity disorder (ADHD). This case demonstrates an unusual co-existence of RTHbeta and partially empty sella in the same patient which, to our knowledge, has not been reported before.
Learning points:
-
We report the coincidental occurrence of RTHbeta and a partially empty sella in the same patient that has not been previously reported.
-
TFTs should be done in all children who present with symptoms suggestive of ADHD as RTHbeta is a common finding in these children.
-
The management of children with ADHD and RTHbeta could be challenging for both pediatricians and parents and the administration of T3 with close monitoring may be helpful in some cases.
-
Incidental pituitary abnormalities do exist in patients with RTHbeta, although extremely rare, and should be evaluated thoroughly and separately.
Search for other papers by Susan Ahern in
Google Scholar
PubMed
Search for other papers by Mark Daniels in
Google Scholar
PubMed
Search for other papers by Amrit Bhangoo in
Google Scholar
PubMed
Summary
In this case report, we present a novel mutation in Lim-homeodomain (LIM-HD) transcription factor, LHX3, manifesting as combined pituitary hormone deficiency (CPHD). This female patient was originally diagnosed in Egypt during infancy with Diamond Blackfan Anemia (DBA) requiring several blood transfusions. Around 10 months of age, she was diagnosed and treated for central hypothyroidism. It was not until she came to the United States around two-and-a-half years of age that she was diagnosed and treated for growth hormone deficiency. Her response to growth hormone replacement on linear growth and muscle tone were impressive. She still suffers from severe global development delay likely due to delay in treatment of congenital central hypothyroidism followed by poor access to reliable thyroid medications. Her diagnosis of DBA was not confirmed after genetic testing in the United States and her hemoglobin normalized with hormone replacement therapies. We will review the patient’s clinical course as well as a review of LHX3 mutations and the associated phenotype.
Learning points:
-
Describe an unusual presentation of undertreated pituitary hormone deficiencies in early life
-
Combined pituitary hormone deficiency due to a novel mutation in pituitary transcription factor, LHX3
-
Describe the clinical phenotype of combined pituitary hormone deficiency due to LHX3 mutations