Diagnosis and Treatment > Investigation > Respiratory status

You are looking at 1 - 3 of 3 items

Ken Takeshima First Department of Internal Medicine, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Ken Takeshima in
Google Scholar
PubMed
Close
,
Hiroyuki Ariyasu First Department of Internal Medicine, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Hiroyuki Ariyasu in
Google Scholar
PubMed
Close
,
Tatsuya Ishibashi First Department of Internal Medicine, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Tatsuya Ishibashi in
Google Scholar
PubMed
Close
,
Shintaro Kawai First Department of Internal Medicine, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Shintaro Kawai in
Google Scholar
PubMed
Close
,
Shinsuke Uraki First Department of Internal Medicine, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Shinsuke Uraki in
Google Scholar
PubMed
Close
,
Jinsoo Koh Department of Neurology, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Jinsoo Koh in
Google Scholar
PubMed
Close
,
Hidefumi Ito Department of Neurology, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Hidefumi Ito in
Google Scholar
PubMed
Close
, and
Takashi Akamizu First Department of Internal Medicine, Wakayama Medical University, Wakayama,, Japan

Search for other papers by Takashi Akamizu in
Google Scholar
PubMed
Close

Summary

Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystem disease affecting muscles, the eyes and the endocrine organs. Diabetes mellitus and primary hypogonadism are endocrine manifestations typically seen in patients with DM1. Abnormalities of hypothalamic–pituitary–adrenal (HPA) axis have also been reported in some DM1 patients. We present a case of DM1 with a rare combination of multiple endocrinopathies; diabetes mellitus, a combined form of primary and secondary hypogonadism, and dysfunction of the HPA axis. In the present case, diabetes mellitus was characterized by severe insulin resistance with hyperinsulinemia. Glycemic control improved after modification of insulin sensitizers, such as metformin and pioglitazone. Hypogonadism was treated with testosterone replacement therapy. Notably, body composition analysis revealed increase in muscle mass and decrease in fat mass in our patient. This implies that manifestations of hypogonadism could be hidden by symptoms of myotonic dystrophy. Our patient had no symptoms associated with adrenal deficiency, so adrenal dysfunction was carefully followed up without hydrocortisone replacement therapy. In this report, we highlight the necessity for evaluation and treatment of multiple endocrinopathies in patients with DM1.

Learning points:

  • DM1 patients could be affected by a variety of multiple endocrinopathies.

  • Our patients with DM1 presented rare combinations of multiple endocrinopathies; diabetes mellitus, combined form of primary and secondary hypogonadism and dysfunction of HPA axis.

  • Testosterone treatment of hypogonadism in patients with DM1 could improve body composition.

  • The patients with DM1 should be assessed endocrine functions and treated depending on the degree of each endocrine dysfunction.

Open access
Judith Gerards Endocrinology in Charlottenburg

Search for other papers by Judith Gerards in
Google Scholar
PubMed
Close
,
Michael M Ritter Diabetology and Endocrinology, HELIOS Klinikum Berlin-Buch, Berlin, Germany

Search for other papers by Michael M Ritter in
Google Scholar
PubMed
Close
,
Elke Kaminsky Praxis für Humangenetik

Search for other papers by Elke Kaminsky in
Google Scholar
PubMed
Close
,
Andreas Gal Bioglobe GmbH, Hamburg, Germany

Search for other papers by Andreas Gal in
Google Scholar
PubMed
Close
,
Wolfgang Hoeppner Bioglobe GmbH, Hamburg, Germany

Search for other papers by Wolfgang Hoeppner in
Google Scholar
PubMed
Close
, and
Marcus Quinkler Endocrinology in Charlottenburg

Search for other papers by Marcus Quinkler in
Google Scholar
PubMed
Close

Summary

DAX1 (NR0B1) is an orphan nuclear receptor, which plays an important role in development and function of the adrenal glands and gonads. Mutations in DAX1 cause X-linked adrenal hypoplasia congenita (X-linked AHC), which is characterized by adrenal insufficiency (AI) and hypogonadotropic hypogonadism (HHG). Affected boys present with adrenal failure usually in childhood and, later in life, with delayed puberty. However, patients with a late-onset form of X-linked AHC have also been described in the past years. We report a male patient who presented with symptoms of an adrenal crisis at the age of 38 years and was later diagnosed with HHG. Family history was positive with several male relatives diagnosed with AI and compatible with the assumed X-chromosomal inheritance of the trait. Direct sequencing of DAX1 of the patient revealed a hemizygous cytosine-to-thymine substitution at nucleotide 64 in exon 1, which creates a novel nonsense mutation (p.(Gln22*)). In order to compare the clinical presentation of the patient to that of other patients with X-linked AHC, we searched the electronic database MEDLINE (PubMed) and found reports of nine other cases with delayed onset of X-linked AHC. In certain cases, genotype–phenotype correlation could be assumed.

Learning points:

  • X-linked AHC is a rare disease characterized by primary AI and hypogonadotropic hypogonadism (HHG). The full-blown clinical picture is seen usually only in males with a typical onset in childhood.

  • Patients with a late-onset form of X-linked AHC have also been described recently. Being aware of this late-onset form might help to reach an early diagnosis and prevent life-threatening adrenal crises.

  • Adult men with primary AI of unknown etiology should be investigated for HHG. Detecting a DAX1 mutation may confirm the clinical diagnosis of late-onset X-linked AHC.

  • In relatives of patients with genetically confirmed X-linked AHC, targeted mutation analysis may help to identify family members at risk and asymptomatic carriers, and discuss conscious family planning.

Open access
Christopher W Rowe Departments of Endocrinology and Diabetes
Schools of Medicine and Public Health

Search for other papers by Christopher W Rowe in
Google Scholar
PubMed
Close
,
Kirsten Murray Departments of Endocrinology and Diabetes

Search for other papers by Kirsten Murray in
Google Scholar
PubMed
Close
,
Andrew Woods Maternity and Gynaecology, John Hunter Hospital, Newcastle, New South Wales, Australia

Search for other papers by Andrew Woods in
Google Scholar
PubMed
Close
,
Sandeep Gupta Department of Nuclear Medicine & PET, Hunter New England Imaging, John Hunter and Calvary Mater Hospital, Newcastle, New South Wales, Australia
Health Sciences, University of Newcastle, Newcastle, New South Wales, Australia

Search for other papers by Sandeep Gupta in
Google Scholar
PubMed
Close
,
Roger Smith Departments of Endocrinology and Diabetes
Schools of Medicine and Public Health

Search for other papers by Roger Smith in
Google Scholar
PubMed
Close
, and
Katie Wynne Departments of Endocrinology and Diabetes
Schools of Medicine and Public Health

Search for other papers by Katie Wynne in
Google Scholar
PubMed
Close

Metastatic thyroid cancer is an uncommon condition to be present at the time of pregnancy, but presents a challenging paradigm of care. Clinicians must balance the competing interests of long-term maternal health, best achieved by iatrogenic hyperthyroidism, regular radioiodine therapy and avoidance of dietary iodine, against the priority to care for the developing foetus, with inevitable compromise. Additionally, epidemiological and cellular data support the role of oestrogen as a growth factor for benign and malignant thyrocytes, although communicating the magnitude of this risk to patients and caregivers, as well as the uncertain impact of any pregnancy on long-term prognosis, remains challenging. Evidence to support treatment decisions in this uncommon situation is presented in the context of a case of a pregnant teenager with known metastatic papillary thyroid cancer and recent radioiodine therapy.

Learning points:

  • Pregnancy is associated with the growth of thyroid nodules due to stimulation from oestrogen receptors on thyrocytes and HCG cross-stimulation of the TSH receptor.

  • Thyroid cancer diagnosed during pregnancy has not been shown to be associated with increased rates of persistent or recurrent disease in most studies.

  • There is little evidence to guide the management of metastatic thyroid cancer in pregnancy, where both maternal and foetal wellbeing must be carefully balanced.

Open access