Diagnosis and Treatment > Medication
Search for other papers by Silvia M Becerra-Bayona in
Google Scholar
PubMed
Search for other papers by Víctor Alfonso Solarte-David in
Google Scholar
PubMed
Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle – FOSCAL, Floridablanca, Colombia
Search for other papers by Claudia L Sossa in
Google Scholar
PubMed
Search for other papers by Ligia C Mateus in
Google Scholar
PubMed
Search for other papers by Martha Villamil in
Google Scholar
PubMed
Search for other papers by Jorge Pereira in
Google Scholar
PubMed
Search for other papers by Martha L Arango-Rodríguez in
Google Scholar
PubMed
Summary
Diabetic foot ulcer morbidity and mortality are dramatically increasing worldwide, reinforcing the urgency to propose more effective interventions to treat such a devastating condition. Previously, using a diabetic mouse model, we demonstrated that administration of bone marrow mesenchymal stem cells derivatives is more effective than the use of bone marrow mesenchymal stem cells alone. Here, we used the aforementioned treatments on three patients with grade 2 diabetic foot ulcers and assessed their beneficial effects, relative to the conventional approach. In the present study, two doses of cell derivatives, one dose of mesenchymal stem cells or one dose of vehicle (saline solution with 5% of human albumin), were intradermally injected around wounds. Wound healing process and changes on re-epithelialization were macroscopically evaluated until complete closure of the ulcers. All ulcers were simultaneously treated with conventional treatment (PolyMen® dressing). Patients treated with either cell derivatives or mesenchymal stem cells achieved higher percentages of wound closure in shorter times, relative to the patient treated with the conventional treatment. The cell derivative and mesenchymal stem cells approaches resulted in complete wound closure and enhanced skin regeneration at some point between days 35 and 42, although no differences between these two treatments were observed. Moreover, wounds treated with the conventional treatment healed after 161 days. Intradermal administration of cell derivatives improved wound healing to a similar extent as mesenchymal stem cells. Thus, our results suggest that mesenchymal stem cell derivatives may serve as a novel and potential therapeutic approach to treat diabetic foot ulcers.
Learning points:
-
In diabetic mouse models, the administration of mesenchymal stem cells derivatives have been demonstrated to be more effective than the use of marrow mesenchymal stem cells alone.
-
Mesenchymal stem cells have been explored as an attractive therapeutic option to treat non-healing ulcers.
-
Mesenchymal stem cells derivatives accelerate the re-epithelialization on diabetic foot ulcers.
HRB Clinical Research Facility, National University of Ireland Galway, Galway, Ireland
Search for other papers by Mohammed Faraz Rafey in
Google Scholar
PubMed
Search for other papers by Arslan Butt in
Google Scholar
PubMed
Search for other papers by Barry Coffey in
Google Scholar
PubMed
Search for other papers by Lisa Reddington in
Google Scholar
PubMed
Search for other papers by Aiden Devitt in
Google Scholar
PubMed
Search for other papers by David Lappin in
Google Scholar
PubMed
HRB Clinical Research Facility, National University of Ireland Galway, Galway, Ireland
Search for other papers by Francis M Finucane in
Google Scholar
PubMed
Summary
We describe two cases of SGLT2i-induced euglycaemic diabetic ketoacidosis, which took longer than we anticipated to treat despite initiation of our DKA protocol. Both patients had an unequivocal diagnosis of type 2 diabetes, had poor glycaemic control with a history of metformin intolerance and presented with relatively vague symptoms post-operatively. Neither patient had stopped their SGLT2i pre-operatively, but ought to have by current treatment guidelines.
Learning points:
-
SGLT2i-induced EDKA is a more protracted and prolonged metabolic derangement and takes approximately twice as long to treat as hyperglycaemic ketoacidosis.
-
Surgical patients ought to stop SGLT2i medications routinely pre-operatively and only resume them after they have made a full recovery from the operation.
-
While the mechanistic basis for EDKA remains unclear, our observation of marked ketonuria in both patients suggests that impaired ketone excretion may not be the predominant metabolic lesion in every case.
-
Measurement of insulin, C-Peptide, blood and urine ketones as well as glucagon and renal function at the time of initial presentation with EDKA may help to establish why this problem occurs in specific patients.