Diagnosis and Treatment > Medication

You are looking at 1 - 2 of 2 items for :

  • Testosterone x
  • Cholecalciferol x
Clear All
Yang Timothy Du Department of Diabetes and Endocrinology, Flinders Medical Centre, Bedford Park, South Australia, Australia

Search for other papers by Yang Timothy Du in
Google Scholar
PubMed
Close
,
Angus Rutter School of Medicine, Flinders University, Bedford Park, South Australia, Australia

Search for other papers by Angus Rutter in
Google Scholar
PubMed
Close
, and
Jui T Ho Department of Diabetes and Endocrinology, Flinders Medical Centre, Bedford Park, South Australia, Australia

Search for other papers by Jui T Ho in
Google Scholar
PubMed
Close

Summary

A 40-year-old man with achondroplasia presented with symptoms of hypogonadism, low libido and gynaecomastia. He was found to have hypergonadotropic hypogonadism, and karyotype and fluorescent in situ hybridisation analysis showed SRY-positive 46, XX disorder of sex development (DSD). He was tested to have the common activating mutation of the FGFR3 gene implicated in achondroplasia, indicating that he had the two rare conditions independently, with an extremely low incidence of 1 in 400 million. This, to the best of our knowledge, is the first report of an individual having these two rare conditions concurrently. This case highlights that individuals with achondroplasia should have normal sexual development, and in those presenting with incomplete sexual maturation or symptoms of hypogonadism should prompt further evaluation. We also propose a plausible link between achondroplasia and 46, XX DSD through the intricate interactions between the SRY, SOX9 and FGFR9 gene pathways.

Learning points:

  • The SOX9 and FGF9 genes, which are upregulated by the SRY gene, are important in both sex determination in the embryo, as well as endochondral bone growth.

  • Patients with achondroplasia should have normal sexual development and function in the absence of other confounding factors.

  • Patients with achondroplasia who present with symptoms and signs of abnormal sexual development and/or hypogonadism should be appropriately investigated for other causes.

Open access
Rossella Mazzilli Andrology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Rossella Mazzilli in
Google Scholar
PubMed
Close
,
Michele Delfino Andrology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Michele Delfino in
Google Scholar
PubMed
Close
,
Jlenia Elia Andrology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Jlenia Elia in
Google Scholar
PubMed
Close
,
Francesco Benedetti Andrology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Francesco Benedetti in
Google Scholar
PubMed
Close
,
Laura Alesi Genetics Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Laura Alesi in
Google Scholar
PubMed
Close
,
Luciana Chessa Genetics Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Luciana Chessa in
Google Scholar
PubMed
Close
, and
Fernando Mazzilli Andrology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome “Sapienza”, Via di Grottarossa 103500189, Rome, Italy

Search for other papers by Fernando Mazzilli in
Google Scholar
PubMed
Close

Summary

We report the case of a 19-year-old boy, presenting several congenital malformations (facial dysmorphisms, cardiac and musculoskeletal abnormalities), mental retardation, recurrent respiratory infections during growth and delayed puberty. Although previously hospitalised in other medical centres, only psychological support had been recommended for this patient. In our department, genetic, biochemical/hormonal and ultrasound examinations were undertaken. The karyotype was 49,XXXXY, a rare aneuploidy with an incidence of 1/85 000–100 000, characterised by the presence of three extra X chromosomes in phenotypically male subjects. The hormonal/biochemical profile showed hypergonadotropic hypogonadism, insulin resistance and vitamin D deficiency. The patient was then treated with testosterone replacement therapy. After 12 months of treatment, we observed the normalisation of testosterone levels. There was also an increase in pubic hair growth, testicular volume and penis size, weight loss, homeostatic model assessment index reduction and the normalisation of vitamin D values. Moreover, the patient showed greater interaction with the social environment and context.

Learning points

  • In cases of plurimalformative syndrome, cognitive impairment, recurrent infections during growth and, primarily, delayed puberty, it is necessary to ascertain as soon as possible whether the patient is suffering from hypogonadism or metabolic disorders due to genetic causes. In our case, the diagnosis of hypogonadism, and then of 49,XXXXY syndrome, was unfortunately made only at the age of 19 years.

  • The testosterone replacement treatment, even though delayed, induced positive effects on: i) development of the reproductive system, ii) regulation of the metabolic profile and iii) interaction with the social environment and context.

  • However, earlier and timely hormonal replacement treatment could probably have improved the quality of life of this subject and his family.

Open access