Diagnosis and Treatment > Medication

You are looking at 1 - 2 of 2 items for :

  • Canagliflozin x
Clear All
Gordon Sloan Diabetes and Endocrinology Department, Barnsley District General Hospital, Barnsley, UK

Search for other papers by Gordon Sloan in
Google Scholar
PubMed
Close
,
Tania Kakoudaki Diabetes and Endocrinology Department, Barnsley District General Hospital, Barnsley, UK

Search for other papers by Tania Kakoudaki in
Google Scholar
PubMed
Close
, and
Nishant Ranjan Diabetes and Endocrinology Department, Barnsley District General Hospital, Barnsley, UK

Search for other papers by Nishant Ranjan in
Google Scholar
PubMed
Close

Summary

We report a case of a 63-year-old man who developed diabetic ketoacidosis (DKA) associated with canagliflozin, a sodium glucose co-transporter 2 (SGLT-2) inhibitor. He presented acutely unwell with a silent myocardial infarction, diverticulitis and DKA with a minimally raised blood glucose level. Standard therapy for DKA was initiated. Despite this, ketonaemia persisted for a total of 12 days after discontinuation of canagliflozin. Glucosuria lasting for several days despite discontinuation of the medications is a recognised phenomenon. However, this is the longest duration of ketonaemia to be reported. The cause of prolonged SGLT-2 inhibition remains uncertain. Deviation from the normal DKA treatment protocol and use of personalised regimens may be required in order to prevent relapse into ketoacidosis while avoiding hypoglycaemia in those that develop this condition.

Learning points:

  • Diabetic ketoacidosis (DKA) may develop in the presence of lower-than-expected blood glucose levels in patients treated with a sodium glucose co-transporter 2 (SGLT-2) inhibitor.

  • Certain individuals prescribed with SGLT-2 inhibitors may be more at risk of DKA, for example, those with a low beta cell function reserve, excessive alcohol consumption and a low carbohydrate diet.

  • In order to reduce the risk of SGLT-2 inhibitor-associated DKA, all patients must be carefully selected before prescription of the medication and appropriately educated.

  • Increased serum ketone levels and glucosuria have been reported to persist for several days despite discontinuation of their SGLT-2 inhibitor.

  • Physicians should consider individualised treatment regimens for subjects with prolonged DKA in the presence of SGLT-2 inhibition.

Open access
Arshpreet Kaur Division of Endocrinology Metabolism and Diabetes, University of Louisville, 550 South Jackson Street, ACB A3G11, Louisville, Kentucky, 40202, USA

Search for other papers by Arshpreet Kaur in
Google Scholar
PubMed
Close
and
Stephen J Winters Division of Endocrinology Metabolism and Diabetes, University of Louisville, 550 South Jackson Street, ACB A3G11, Louisville, Kentucky, 40202, USA

Search for other papers by Stephen J Winters in
Google Scholar
PubMed
Close

Summary

Drugs that inhibit the sodium-glucose co-transporter-2 (SGLT2) are an exciting novel, insulin-independent treatment for diabetes that block glucose reabsorption from the proximal tubules of the kidney, leading to increased glucose excretion and lower blood glucose levels. Inhibition of SGLT2 activity also reduces sodium reabsorption, which together with glycosuria produces a mild diuretic effect with the potential for dehydration and hyperkalemia. We report on a 60-year-old man with uncontrolled type 2 diabetes treated with insulin, glimepiride, metformin and canagliflozin, who was admitted with altered mental status after a syncopal episode. He had a 1-week history of ingestion of Tums for heartburn followed by poor appetite and lethargy. Laboratory work-up showed acute kidney injury, diabetic ketoacidosis (DKA), and parathyroid hormone-independent severe hypercalcemia of 17.4 mg/dl. DKA resolved with insulin treatment, and saline hydration led to improvement in hypercalcemia and renal function over 48 h, but was accompanied by a rapid increase in the serum sodium concentration from 129 to 162 mmol/l despite changing fluids to 0.45% saline. Urine studies were consistent with osmotic diuresis. Hypernatremia was slowly corrected with hypotonic fluids, with improvement in his mental status over the next 2 days. This is the first report of hypercalcemia associated with the use of a SLGT2 inhibitor. Although the exact mechanism is unknown, canagliflozin may predispose to hypercalcemia in patients ingesting excessive calcium because of dehydration from osmotic diuresis, with reduced calcium excretion and possible increased intestinal calcium absorption. Saline therapy and osmotic diuresis may lead to hypernatremia from electrolyte-free water loss.

Learning points

  • Canagliflozin, an SGLT2 inhibitor, may cause hypercalcemia in susceptible patients.

  • Although the exact mechanisms are unknown, dehydration from osmotic diuresis and increased intestinal calcium absorption play a role.

  • Close monitoring of serum calcium levels is recommended in patients treated with SGLT2 inhibitors who are elderly, have established hypercalcemia, or take oral calcium supplements.

  • Saline therapy and osmotic diuresis may lead to hypernatremia from electrolyte-free water loss in susceptible patients.

Open access