Browse

You are looking at 1 - 2 of 2 items

Open access

S Vimalesvaran, S Narayanaswamy, L Yang, J K Prague, A Buckley, A D Miras, S Franks, K Meeran and W S Dhillo

Summary

Primary amenorrhoea is defined as the failure to commence menstruation by the age of 15 years, in the presence of normal secondary sexual development. The potential causes of primary amenorrhoea extend from structural to chromosomal abnormalities. Polycystic ovarian syndrome (PCOS) is a common cause of secondary amenorrhoea but an uncommon cause of primary amenorrhoea. An early and prompt diagnosis of PCOS is important, as up to 30% of these women are predisposed to glucose intolerance and obesity, with the subgroup of women presenting with primary amenorrhoea and PCOS displaying a higher incidence of metabolic dysfunction. We describe a case of an 18-year-old female presenting with primary amenorrhoea of unknown aetiology. Although initial investigations did not demonstrate clinical or biochemical hyperandrogenism or any radiological evidence of polycystic ovaries, a raised luteinising hormone (LH) suggested a diagnosis of PCOS. If PCOS was the correct diagnosis, then one would expect intact hypothalamic GnRH and pituitary gonadotropin release. We used the novel hormone kisspeptin to confirm intact hypothalamic GnRH release and a GnRH stimulation test to confirm intact pituitary gonadotroph function. This case highlights that kisspeptin is a potential unique tool to test GnRH function in patients presenting with reproductive disorders.

Learning points:

  • Polycystic ovarian syndrome (PCOS) can present with primary amenorrhoea, and therefore, should be considered in the differential diagnosis.

  • PCOS is a heterogeneous condition that may present in lean women with few or absent signs of hyperandrogenism.

  • GnRH stimulation tests are useful in evaluating pituitary function; however, to date, we do not have a viable test of GnRH function. Kisspeptin has the potential to form a novel diagnostic tool for assessing hypothalamic GnRH function by monitoring gonadotropin response as a surrogate marker of GnRH release.

  • Confirmation of intact GnRH function helps consolidate a diagnosis in primary amenorrhoea and gives an indication of future fertility.

Open access

Marlene Tarvainen, Satu Mäkelä, Jukka Mustonen and Pia Jaatinen

Summary

Puumala hantavirus (PUUV) infection causes nephropathia epidemica (NE), a relatively mild form of haemorrhagic fever with renal syndrome (HFRS). Hypophyseal haemorrhage and hypopituitarism have been described in case reports on patients with acute NE. Chronic hypopituitarism diagnosed months or years after the acute illness has also been reported, without any signs of a haemorrhagic aetiology. The mechanisms leading to the late-onset hormonal defects remain unknown. Here, we present a case of NE-associated autoimmune polyendocrinopathy and hypopituitarism presumably due to autoimmune hypophysitis. Thyroid peroxidase antibody seroconversion occurred between 6 and 12 months, and ovarian as well as glutamate decarboxylase antibodies were found 18 months after acute NE. Brain MRI revealed an atrophic adenohypophysis with a heterogeneous, low signal intensity compatible with a sequela of hypophysitis. The patient developed central (or mixed central and peripheral) hypothyroidism, hypogonadism and diabetes insipidus, all requiring hormonal replacement therapy. This case report suggests that late-onset hormonal defects after PUUV infection may develop by an autoimmune mechanism. This hypothesis needs to be confirmed by prospective studies with sufficient numbers of patients.

Learning points:

  • Pituitary haemorrhage resulting in hypopituitarism has been reported during acute HFRS caused by PUUV and other hantaviruses.

  • Central and peripheral hormone deficiencies developing months or years after HFRS have also been found, with an incidence higher than that in the general population. The pathogenesis of these late-onset hormonal defects remains unknown.

  • This case report suggests that the late-onset hypopituitarism and peripheral endocrine defects after HFRS could evolve via autoimmune mechanisms.

  • The sensitivity of current anti-pituitary antibody (APA) tests is low. A characteristic clinical course, together with typical brain MRI and endocrine findings may be sufficient for a non-invasive diagnosis of autoimmune hypophysitis, despite negative APAs.