Patient Demographics

You are looking at 1 - 6 of 6 items for :

  • United States x
Clear All
Christina Lee Department of Pediatrics, University of Maryland Children’s Hospital, Baltimore, Maryland, USA

Search for other papers by Christina Lee in
Google Scholar
PubMed
Close
,
Leah Hirschman Department of Pediatrics, University of Maryland Children’s Hospital, Baltimore, Maryland, USA

Search for other papers by Leah Hirschman in
Google Scholar
PubMed
Close
,
Teresa York Department of Pediatric Hematology/Oncology, University of Maryland Children’s Hospital, Baltimore, Maryland, USA

Search for other papers by Teresa York in
Google Scholar
PubMed
Close
, and
Paula Newton Department of Pediatric Endocrinology, University of Maryland Children’s Hospital, Baltimore, Maryland, USA

Search for other papers by Paula Newton in
Google Scholar
PubMed
Close

Summary

Neonatal adrenal hemorrhage (NAH) occurs in up to 3% of infants and is the most common adrenal mass in newborns. The most common presentation of NAH is an asymptomatic palpable flank mass which resolves over time without intervention. In rare cases, NAH can present as hemorrhage, shock, or adrenal insufficiency. This case describes a preterm infant born with severe anemia in the setting of bilateral adrenal hemorrhages with resulting adrenal insufficiency. The infant was successfully treated with blood transfusions and steroids. This is a unique presentation of NAH as it was bilateral, presented with severe anemia, and resulted in prolonged adrenal insufficiency.

Learning points

  • Consider adrenal hemorrhage for cases of severe anemia at birth.

  • Adrenal insufficiency is a rare complication of adrenal hemorrhage.

  • Adrenal recovery can take months, if not years.

Open access
Himangshu S Bose Laboratory of Biochemistry, Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
Memorial University Medical Center, Savannah, Georgia, USA

Search for other papers by Himangshu S Bose in
Google Scholar
PubMed
Close
,
Alan M Rice Laboratory of Biochemistry, Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
Pediatric Endocrinology and Diabetes Center, Kalispell Regional Medical Center, Kalispell, Montana, USA

Search for other papers by Alan M Rice in
Google Scholar
PubMed
Close
,
Brendan Marshall Anatomy and Pathology, Augusta State University, Augusta, Georgia, USA

Search for other papers by Brendan Marshall in
Google Scholar
PubMed
Close
,
Fadi Gebrail Laboratory of Biochemistry, Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
Laboratory of Pathology, Memorial University Medical Center, Savannah, Georgia, USA

Search for other papers by Fadi Gebrail in
Google Scholar
PubMed
Close
,
David Kupshik Laboratory of Biochemistry, Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA

Search for other papers by David Kupshik in
Google Scholar
PubMed
Close
, and
Elizabeth W Perry Anatomy and Pathology, Augusta State University, Augusta, Georgia, USA

Search for other papers by Elizabeth W Perry in
Google Scholar
PubMed
Close

Summary

Steroid hormones are essential for the survival of all mammals. In adrenal glands and gonads, cytochrome P450 side chain cleavage enzyme (SCC or CYP11A1), catalyzes conversion of cholesterol to pregnenolone. We studied a patient with ambiguous genitalia by the absence of Müllerian ducts and the presence of an incompletely formed vagina, who had extremely high adrenocorticotropic hormone (ACTH) and reduced pregnenolone levels with enlarged adrenal glands. The testes revealed seminiferous tubules, stroma, rete testis with interstitial fibrosis and reduced number of germ cells. Electron microscopy showed that the patient’s testicular mitochondrial size was small with little SCC expression within the mitochondria. The mitochondria were not close to the mitochondria-associated ER membrane (MAM), and cells were filled with the microfilaments. Our result revealed that absence of pregnenolone is associated with organelle stress, leading to altered protein organization that likely created steric hindrance in testicular cells.

Learning points:

  • Testes revealed seminiferous tubules, stroma, rete testis with interstitial fibrosis and reduced number of germ cells;

  • Testicular mitochondrial size was small with little SCC expression within the mitochondria;

  • Absence of pregnenolone is associated with organelle stress.

Open access
Nicholas R Zessis Pediatrics and Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA

Search for other papers by Nicholas R Zessis in
Google Scholar
PubMed
Close
,
Jennifer L Nicholas Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA

Search for other papers by Jennifer L Nicholas in
Google Scholar
PubMed
Close
, and
Stephen I Stone Pediatrics and Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA

Search for other papers by Stephen I Stone in
Google Scholar
PubMed
Close

Summary

Bilateral adrenal hemorrhages rarely occur during the neonatal period and are often associated with traumatic vaginal deliveries. However, the adrenal gland has highly regenerative capabilities and adrenal insufficiency typically resolves over time. We evaluated a newborn female after experiencing fetal macrosomia and a traumatic vaginal delivery. She developed acidosis and acute renal injury. Large adrenal hemorrhages were noted bilaterally on ultrasound, and she was diagnosed with adrenal insufficiency based on characteristic electrolyte changes and a low cortisol (4.2 µg/dL). On follow-up testing, this patient was unable to be weaned off of hydrocortisone or fludrocortisone despite resolution of hemorrhages on ultrasound. Providers should consider bilateral adrenal hemorrhage when evaluating critically ill neonates after a traumatic delivery. In extreme cases, this may be a persistent process.

Learning points:

  • Risk factors for adrenal hemorrhage include fetal macrosomia, traumatic vaginal delivery and critical acidemia.

  • Signs of adrenal hemorrhage include jaundice, flank mass, skin discoloration or scrotal hematoma.

  • Adrenal insufficiency often is a transient process when related to adrenal hemorrhage.

  • Severe adrenal hemorrhages can occur in the absence of symptoms.

  • Though rare, persistent adrenal insufficiency may occur in extremely severe cases of bilateral adrenal hemorrhage.

  • Consider adrenal hemorrhage when evaluating a neonate for shock in the absence of an infectious etiology.

Open access
Jasmeet Kaur Laboratory of Biochemistry, Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
Anderson Cancer Institute, Memorial University Medical Center, Savannah, Georgia, USA

Search for other papers by Jasmeet Kaur in
Google Scholar
PubMed
Close
,
Alan M Rice Division of Pediatric Endocrinology, Memorial University Medical Center, Savannah, Georgia, USA
Augusta University School of Medicine, Augusta, Georgia, USA
Neonatology Intensive Care Unit, Memorial University Medical Center, Georgia, USA

Search for other papers by Alan M Rice in
Google Scholar
PubMed
Close
,
Elizabeth O’Connor Laboratory of Biochemistry, Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA

Search for other papers by Elizabeth O’Connor in
Google Scholar
PubMed
Close
,
Anil Piya Division of Pediatric Endocrinology, Memorial University Medical Center, Savannah, Georgia, USA
Neonatology Intensive Care Unit, Memorial University Medical Center, Georgia, USA

Search for other papers by Anil Piya in
Google Scholar
PubMed
Close
,
Bradley Buckler Neonatology Intensive Care Unit, Memorial University Medical Center, Georgia, USA

Search for other papers by Bradley Buckler in
Google Scholar
PubMed
Close
, and
Himangshu S Bose Laboratory of Biochemistry, Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
Anderson Cancer Institute, Memorial University Medical Center, Savannah, Georgia, USA

Search for other papers by Himangshu S Bose in
Google Scholar
PubMed
Close

Congenital adrenal hyperplasia (CAH) is caused by mutations in cytochrome P450 side chain cleavage enzyme (CYP11A1 and old name, SCC). Errors in cholesterol side chain cleavage by the mitochondrial resident CYP11A1 results in an inadequate amount of pregnenolone production. This study was performed to evaluate the cause of salt-losing crisis and possible adrenal failure in a pediatric patient whose mother had a history of two previous stillbirths and loss of another baby within a week of birth. CAH can appear in any population in any region of the world. The study was conducted at Memorial University Medical Center and Mercer University School of Medicine. The patient was admitted to Pediatric Endocrinology Clinic due to salt-losing crisis and possible adrenal failure. The patient had CAH, an autosomal recessive disease, due to a novel mutation in exon 5 of the CYP11A1 gene, which generated a truncated protein of 286 amino acids compared with wild-type protein that has 521 amino acids (W286X). Although unrelated, both parents are carriers. Mitochondrial protein import analysis of the mutant CYP11A1 in steroidogenic MA-10 cells showed that the protein is imported in a similar fashion as observed for the wild-type protein and was cleaved to a shorter fragment. However, mutant’s activity was 10% of that obtained for the wild-type protein in non-steroidogenic COS-1 cells. In a patient of Mexican descent, a homozygous CYP11A1 mutation caused CAH, suggesting that this disease is not geographically restricted even in a homogeneous population.

Learning points:

  • Novel mutation in CYP11A1 causes CAH;

  • This is a pure population from Central Mexico;

  • Novel mutation created early truncated protein.

Open access
Marisa M Fisher Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, Indiana, 46220, USA

Search for other papers by Marisa M Fisher in
Google Scholar
PubMed
Close
,
Susanne M Cabrera Division of Pediatric Endocrinology, Department of Pediatrics, Medical College of Wisconsin, Children's Hospital of Wisconsin, 9000 W. Wisconsin Avenue, PO Box 1997, Milwaukee, Wisconsin, 53201, USA

Search for other papers by Susanne M Cabrera in
Google Scholar
PubMed
Close
, and
Erik A Imel Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, Indiana, 46220, USA
Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 541 North Clinical Drive, Indianapolis, Indiana, 46202, USA

Search for other papers by Erik A Imel in
Google Scholar
PubMed
Close

Summary

Neonatal severe hyperparathyroidism (NSHPT) is a rare disorder caused by inactivating calcium-sensing receptor (CASR) mutations that result in life-threatening hypercalcemia and metabolic bone disease. Until recently, therapy has been surgical parathyroidectomy. Three previous case reports have shown successful medical management of NSHPT with cinacalcet. Here we present the detailed description of two unrelated patients with NSHPT due to heterozygous R185Q CASR mutations. Patient 1 was diagnosed at 11 months of age and had developmental delays, dysphagia, bell-shaped chest, and periosteal bone reactions. Patient 2 was diagnosed at 1 month of age and had failure to thrive, osteopenia, and multiple rib fractures. Cinacalcet was initiated at 13 months of age in patient 1, and at 4 months of age in patient 2. We have successfully normalized their parathyroid hormone and alkaline phosphatase levels. Despite the continuance of mild hypercalcemia (11–12 mg/dl), both patients showed no hypercalcemic symptoms. Importantly, patient 1 had improved neurodevelopment and patient 2 never experienced any developmental delays after starting cinacalcet. Neither experienced fractures after starting cinacalcet. Both have been successfully managed long-term without any significant adverse events. These cases expand the current literature of cinacalcet use in NSHPT to five successful reported cases. We propose that cinacalcet may be considered as an option for treating the severe hypercalcemia and metabolic bone disease found in infants and children with inactivating CASR disorders.

Learning points

  • NSHPT due to mutations in the CASR gene occurs with hypercalcemia and metabolic bone disease, but not always with severe critical illness in infancy.

  • NSHPT should be considered in the differential diagnosis for a newborn with a bell-shaped chest, osteopenia, and periosteal reactions.

  • Neurodevelopmental consequences may occur in children with hypercalcemia and may improve during treatment.

  • Calcimimetics can be used to successfully treat the pathophysiology of NSHPT directly to control serum calcium levels.

Open access
Sudeep K Rajpoot College of Medicine, American University of Antigua, Antigua

Search for other papers by Sudeep K Rajpoot in
Google Scholar
PubMed
Close
,
Carlos Maggi Pediatric Intensive Care, Miller Children's Hospital, Long Beach, California, USA

Search for other papers by Carlos Maggi in
Google Scholar
PubMed
Close
, and
Amrit Bhangoo Pediatric Intensive Care, Miller Children's Hospital, Long Beach, California, USA

Search for other papers by Amrit Bhangoo in
Google Scholar
PubMed
Close

Summary

Neonatal hyperkalemia and hyponatremia are medical conditions that require an emergent diagnosis and treatment to avoid morbidity and mortality. Here, we describe the case of a 10-day-old female baby presenting with life-threatening hyperkalemia, hyponatremia, and metabolic acidosis diagnosed as autosomal dominant pseudohypoaldosteronism type 1 (PHA1). This report aims to recognize that PHA1 may present with a life-threatening arrhythmia due to severe hyperkalemia and describes the management of such cases in neonates.

Learning points

  • PHA1 may present with a life-threatening arrhythmia.

  • Presentation of PHA can be confused with congenital adrenal hyperplasia.

  • Timing and appropriate medical management in the critical care unit prevented fatality from severe neonatal PHA.

Open access