Diagnosis and Treatment > Signs and Symptoms

You are looking at 1 - 4 of 4 items for :

  • Failure to thrive x
Clear All
Andrew R Tang Division of Endocrinology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada

Search for other papers by Andrew R Tang in
Google Scholar
PubMed
Close
,
Laura E Hinz Division of Endocrinology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada

Search for other papers by Laura E Hinz in
Google Scholar
PubMed
Close
,
Aneal Khan Department of Medical Genetics and Pediatrics, University of Calgary, Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada

Search for other papers by Aneal Khan in
Google Scholar
PubMed
Close
, and
Gregory A Kline Division of Endocrinology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada

Search for other papers by Gregory A Kline in
Google Scholar
PubMed
Close

Summary

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare, autosomal recessive disorder caused by mutations in the SLC34A3 gene that encodes the renal sodium-dependent phosphate cotransporter 2c (NaPi-IIc). It may present as intermittent mild hypercalcemia which may attract initial diagnostic attention but appreciation of concomitant hypophosphatemia is critical for consideration of the necessary diagnostic approach. A 21-year-old woman was assessed by adult endocrinology for low bone mass. She initially presented age two with short stature, nephrocalcinosis and mild intermittent hypercalcemia with hypercalciuria. She had no evidence of medullary sponge kidney or Fanconi syndrome and no bone deformities, pain or fractures. She had recurrent episodes of nephrolithiasis. In childhood, she was treated with hydrochlorothiazide to reduce urinary calcium. Upon review of prior investigations, she had persistent hypophosphatemia with phosphaturia, low PTH and a high-normal calcitriol. A diagnosis of HHRH was suspected and genetic testing confirmed a homozygous c.1483G>A (p.G495R) missense mutation of the SLC34A3 gene. She was started on oral phosphate replacement which normalized her serum phosphate, serum calcium and urine calcium levels over the subsequent 5 years. HHRH is an autosomal recessive condition that causes decreased renal reabsorption of phosphate, leading to hyperphosphaturia, hypophosphatemia and PTH-independent hypercalcemia due to the physiologic increase in calcitriol which also promotes hypercalciuria. Classically, patients present in childhood with bone pain, vitamin D-independent rickets and growth delay. This case of a SLC34A3 mutation illustrates the importance of investigating chronic hypophosphatemia even in the presence of other more common electrolyte abnormalities.

Learning points:

  • Hypophosphatemia is an important diagnostic clue that should not be ignored, even in the face of more common electrolyte disorders.

  • HHRH is a cause of PTH-independent hypophosphatemia that may also show hypercalcemia.

  • HHRH is a cause of hypophosphatemic nephrocalcinosis that should not be treated with calcitriol, unlike other congenital phosphate wasting syndromes.

  • Some congenital phosphate wasting disorders may not present until adolescence or early adulthood.

Open access
Susan Ahern Division of Endocrinology, UCLA School of Medicine, Ventura, California, USA

Search for other papers by Susan Ahern in
Google Scholar
PubMed
Close
,
Mark Daniels Division of Pediatric Endocrinology, Children’s Hospital of Orange County, Orange, California, USA

Search for other papers by Mark Daniels in
Google Scholar
PubMed
Close
, and
Amrit Bhangoo Division of Pediatric Endocrinology, Children’s Hospital of Orange County, Orange, California, USA

Search for other papers by Amrit Bhangoo in
Google Scholar
PubMed
Close

Summary

In this case report, we present a novel mutation in Lim-homeodomain (LIM-HD) transcription factor, LHX3, manifesting as combined pituitary hormone deficiency (CPHD). This female patient was originally diagnosed in Egypt during infancy with Diamond Blackfan Anemia (DBA) requiring several blood transfusions. Around 10 months of age, she was diagnosed and treated for central hypothyroidism. It was not until she came to the United States around two-and-a-half years of age that she was diagnosed and treated for growth hormone deficiency. Her response to growth hormone replacement on linear growth and muscle tone were impressive. She still suffers from severe global development delay likely due to delay in treatment of congenital central hypothyroidism followed by poor access to reliable thyroid medications. Her diagnosis of DBA was not confirmed after genetic testing in the United States and her hemoglobin normalized with hormone replacement therapies. We will review the patient’s clinical course as well as a review of LHX3 mutations and the associated phenotype.

Learning points:

  • Describe an unusual presentation of undertreated pituitary hormone deficiencies in early life

  • Combined pituitary hormone deficiency due to a novel mutation in pituitary transcription factor, LHX3

  • Describe the clinical phenotype of combined pituitary hormone deficiency due to LHX3 mutations

Open access
Marisa M Fisher Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, Indiana, 46220, USA

Search for other papers by Marisa M Fisher in
Google Scholar
PubMed
Close
,
Susanne M Cabrera Division of Pediatric Endocrinology, Department of Pediatrics, Medical College of Wisconsin, Children's Hospital of Wisconsin, 9000 W. Wisconsin Avenue, PO Box 1997, Milwaukee, Wisconsin, 53201, USA

Search for other papers by Susanne M Cabrera in
Google Scholar
PubMed
Close
, and
Erik A Imel Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, Indiana, 46220, USA
Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 541 North Clinical Drive, Indianapolis, Indiana, 46202, USA

Search for other papers by Erik A Imel in
Google Scholar
PubMed
Close

Summary

Neonatal severe hyperparathyroidism (NSHPT) is a rare disorder caused by inactivating calcium-sensing receptor (CASR) mutations that result in life-threatening hypercalcemia and metabolic bone disease. Until recently, therapy has been surgical parathyroidectomy. Three previous case reports have shown successful medical management of NSHPT with cinacalcet. Here we present the detailed description of two unrelated patients with NSHPT due to heterozygous R185Q CASR mutations. Patient 1 was diagnosed at 11 months of age and had developmental delays, dysphagia, bell-shaped chest, and periosteal bone reactions. Patient 2 was diagnosed at 1 month of age and had failure to thrive, osteopenia, and multiple rib fractures. Cinacalcet was initiated at 13 months of age in patient 1, and at 4 months of age in patient 2. We have successfully normalized their parathyroid hormone and alkaline phosphatase levels. Despite the continuance of mild hypercalcemia (11–12 mg/dl), both patients showed no hypercalcemic symptoms. Importantly, patient 1 had improved neurodevelopment and patient 2 never experienced any developmental delays after starting cinacalcet. Neither experienced fractures after starting cinacalcet. Both have been successfully managed long-term without any significant adverse events. These cases expand the current literature of cinacalcet use in NSHPT to five successful reported cases. We propose that cinacalcet may be considered as an option for treating the severe hypercalcemia and metabolic bone disease found in infants and children with inactivating CASR disorders.

Learning points

  • NSHPT due to mutations in the CASR gene occurs with hypercalcemia and metabolic bone disease, but not always with severe critical illness in infancy.

  • NSHPT should be considered in the differential diagnosis for a newborn with a bell-shaped chest, osteopenia, and periosteal reactions.

  • Neurodevelopmental consequences may occur in children with hypercalcemia and may improve during treatment.

  • Calcimimetics can be used to successfully treat the pathophysiology of NSHPT directly to control serum calcium levels.

Open access
Suresh Chandran Departments of Neonatology, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore

Search for other papers by Suresh Chandran in
Google Scholar
PubMed
Close
,
Fabian Yap Kok Peng Paediatric Endocrinology, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore

Search for other papers by Fabian Yap Kok Peng in
Google Scholar
PubMed
Close
,
Victor Samuel Rajadurai Departments of Neonatology, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore

Search for other papers by Victor Samuel Rajadurai in
Google Scholar
PubMed
Close
,
Yap Te Lu Paediatric Surgery, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore

Search for other papers by Yap Te Lu in
Google Scholar
PubMed
Close
,
Kenneth T E Chang Children's Pathology, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore

Search for other papers by Kenneth T E Chang in
Google Scholar
PubMed
Close
,
S E Flanagan Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK

Search for other papers by S E Flanagan in
Google Scholar
PubMed
Close
,
S Ellard Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK

Search for other papers by S Ellard in
Google Scholar
PubMed
Close
, and
Khalid Hussain Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK

Search for other papers by Khalid Hussain in
Google Scholar
PubMed
Close

Summary

background: Congenital hyperinsulinism (CHI) is a rare genetic disorder characterised by inappropriate insulin secretion in the face of severe hypoglycaemia. There are two histological subtypes of CHI namely diffuse and focal. Diffuse CHI is most common due to recessive mutations in ABCC8/KCNJ11 (which encode the SUR/KIR6.2 components of the pancreatic β-cell KATP channel) whereas focal CHI is due to a paternally inherited ABCC8/KCNJ11 mutation and somatic loss of heterozygosity for the 11p allele inside the focal lesion. Fluorine-18-l-dihydroxyphenylalanine positron emission tomography/computed tomography (18F-DOPA-PET/CT) is used in the pre-operative localisation of focal lesions prior to surgery. Diffuse CHI if medically unresponsive will require a near total pancreatectomy whereas focal CHI will only require a limited lesionectomy, thus curing the patient from the hypoglycaemia.

Aims: To report the first case of genetically confirmed CHI in Singapore from a heterozygous paternally inherited ABCC8 mutation.

Methods/Results: A term male infant presented with severe hyperinsulinaemic hypoglycaemia (HH) after birth and failed medical treatment with diazoxide and octreotide. Genetic testing (paternally inherited mutation in ABCC8/p.D1472N) suggested focal disease, but due to the unavailability of 18F-DOPA-PET/CT to confirm focal disease, a partial pancreatectomy was performed. Interestingly, histology of the resected pancreatic tissue showed changes typical of diffuse disease.

Conclusion: Heterozygous paternally inherited ABCC8/KCNJ11 mutations can lead to diffuse or focal CHI.

Learning points

  • HH is a cause of severe hypoglycaemia in the newborn period.

  • Paternal mutations in ABCC8/KCNJ11 can lead to diffuse or focal disease.

  • 18F-DOPA-PET/CT scan is the current imaging of choice for localising focal lesions.

  • Gallium-68 tetra-aza-cyclododecane-N NNN-‴-tetra-acetate octreotate PET scan is not a useful imaging tool for localising focal lesions.

  • The molecular mechanism by which a heterozygous ABCC8 mutation leads to diffuse disease is currently unclear.

  • Focal lesions are curable by lesionectomy and so genetic studies in patients with HH must be followed by imaging using 18F-DOPA-PET/CT scan.

Open access