Diagnosis and Treatment > Signs and Symptoms

You are looking at 1 - 1 of 1 items for :

Clear All
Hodaka Yamada Division of Endocrinology and Metabolism, Jichi Medical University Saitama Medical Center, Saitama, Japan

Search for other papers by Hodaka Yamada in
Google Scholar
PubMed
Close
,
Shunsuke Funazaki Division of Endocrinology and Metabolism, Jichi Medical University Saitama Medical Center, Saitama, Japan

Search for other papers by Shunsuke Funazaki in
Google Scholar
PubMed
Close
,
Masafumi Kakei Division of Endocrinology and Metabolism, Jichi Medical University Saitama Medical Center, Saitama, Japan

Search for other papers by Masafumi Kakei in
Google Scholar
PubMed
Close
,
Kazuo Hara Division of Endocrinology and Metabolism, Jichi Medical University Saitama Medical Center, Saitama, Japan

Search for other papers by Kazuo Hara in
Google Scholar
PubMed
Close
, and
San-e Ishikawa Division of Endocrinology and Metabolism, International University of Health and Welfare Hospital, Nasushiobara, Japan

Search for other papers by San-e Ishikawa in
Google Scholar
PubMed
Close

Summary

Diabetic ketoacidosis (DKA) is a critical complication of type 1 diabetes associated with water and electrolyte disorders. Here, we report a case of DKA with extreme hyperkalemia (9.0 mEq/L) in a patient with type 1 diabetes on hemodialysis. He had a left frontal cerebral infarction resulting in inability to manage his continuous subcutaneous insulin infusion pump. Electrocardiography showed typical changes of hyperkalemia, including absent P waves, prolonged QRS interval and tented T waves. There was no evidence of total body water deficit. After starting insulin and rapid hemodialysis, the serum potassium level was normalized. Although DKA may present with hypokalemia, rapid hemodialysis may be necessary to resolve severe hyperkalemia in a patient with renal failure.

Learning points:

  • Patients with type 1 diabetes on hemodialysis may develop ketoacidosis because of discontinuation of insulin treatment.

  • Patients on hemodialysis who develop ketoacidosis may have hyperkalemia because of anuria.

  • Absolute insulin deficit alters potassium distribution between the intracellular and extracellular space, and anuria abolishes urinary excretion of potassium.

  • Rapid hemodialysis along with intensive insulin therapy can improve hyperkalemia, while fluid infusions may worsen heart failure in patients with ketoacidosis who routinely require hemodialysis.

Open access