Diagnosis and Treatment > Signs and Symptoms

You are looking at 1 - 2 of 2 items for :

  • Premature birth x
Clear All
Peter Novodvorsky Department of Diabetes and Endocrinology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK

Search for other papers by Peter Novodvorsky in
Google Scholar
PubMed
Close
,
Emma Walkinshaw Department of Diabetes and Endocrinology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK

Search for other papers by Emma Walkinshaw in
Google Scholar
PubMed
Close
,
Waliur Rahman Department of Diabetes and Endocrinology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK

Search for other papers by Waliur Rahman in
Google Scholar
PubMed
Close
,
Valerie Gordon Department of Diabetes and Endocrinology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK

Search for other papers by Valerie Gordon in
Google Scholar
PubMed
Close
,
Karen Towse Department of Diabetes and Endocrinology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK

Search for other papers by Karen Towse in
Google Scholar
PubMed
Close
,
Sarah Mitchell Department of Diabetes and Endocrinology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK

Search for other papers by Sarah Mitchell in
Google Scholar
PubMed
Close
,
Dinesh Selvarajah Department of Diabetes and Endocrinology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK

Search for other papers by Dinesh Selvarajah in
Google Scholar
PubMed
Close
,
Priya Madhuvrata Department of Obstetrics, Gynaecology and Neonatology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK

Search for other papers by Priya Madhuvrata in
Google Scholar
PubMed
Close
, and
Alia Munir Department of Diabetes and Endocrinology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK

Search for other papers by Alia Munir in
Google Scholar
PubMed
Close

Summary

Bariatric surgery is an effective therapy for obesity but is associated with long-term complications such as dumping syndromes and nutritional deficiencies. We report a case of a 26-year-old caucasian female, with history of morbid obesity and gestational diabetes (GDM), who became pregnant 4 months after Roux-en-Y bypass surgery. She developed GDM during subsequent pregnancy, which was initially managed with metformin and insulin. Nocturnal hypoglycaemia causing sleep disturbance and daytime somnolence occured at 19 weeks of pregnancy (19/40). Treatment with rapid-acting carbohydrates precipitated further hypoglycaemia. Laboratory investigations confirmed hypoglycaemia at 2.2 mmol/L with appropriately low insulin and C-peptide, intact HPA axis and negative IgG insulin antibodies. The patient was seen regularly by the bariatric dietetic team but concerns about compliance persisted. A FreeStyle Libre system was used from 21/40 enabling the patient a real-time feedback of changes in interstitial glucose following high or low GI index food intake. The patient declined a trial of acarbose but consented to an intraveneous dextrose infusion overnight resulting in improvement but not complete abolishment of nocturnal hypoglycaemia. Hypoglycaemias subsided at 34/40 and metformin and insulin had to be re-introduced due to high post-prandial blood glucose readings. An emergency C-section was indicated at 35 + 1/40 and a small-for-gestational-age female was delivered. There have been no further episodes of hypoglycaemia following delivery. This case illustrates challenges in the management of pregnancy following bariatric surgery. To our knowledge, this is the first use of FreeStyle Libre in dumping syndrome in pregnancy following bariatric surgery with troublesome nocturnal hypoglycaemia.

Learning points:

  • Bariatric surgery represents the most effective treatment modality in cases of severe obesity. With increasing prevalence of obesity, more people are likely to undergo bariatric procedures, many of which are women of childbearing age.

  • Fertility generally improves after bariatric surgery due to weight reduction, but pregnancy is not recommended for at least 12–24 months after surgery. If pregnancy occurs, there are currently little evidence-based guidelines available on how to manage complications such as dumping syndromes or gestational diabetes (GDM) in women with history of bariatric surgery.

  • Diagnosis of GDM relies on the use of a 75 g oral glucose tolerance test (OGTT). The use of this test in pregnant women is not recommended due to its potential to precipitate dumping syndrome. Capillary glucose monitoring profiles or continuous glucose monitoring (CGM) is being currently discussed as alternative testing modalities.

  • As the CGM technology becomes more available, including the recently introduced FreeStyle Libre Flash glucose monitoring system, more pregnant women, including those after bariatric surgery, will have access to this technology. We suggest urgent development of guidelines regarding the use of CGM and flash glucose monitoring tools in these circumstances and in the interim recommend careful consideration of their use on a case-to-case basis.

Open access
Asma Deeb Paediatric Endocrinology Department, Mafraq Hospital, Abu Dhabi, United Arab Emirates

Search for other papers by Asma Deeb in
Google Scholar
PubMed
Close
,
Faisal Al-Zidgali Neonatology Department, Corniche Hospital, Abu Dhabi, United Arab Emirates

Search for other papers by Faisal Al-Zidgali in
Google Scholar
PubMed
Close
, and
Bibian N Ofoegbu Neonatology Department, Corniche Hospital, Abu Dhabi, United Arab Emirates

Search for other papers by Bibian N Ofoegbu in
Google Scholar
PubMed
Close

Summary

Wolcott–Rallison syndrome (WRS) is a rare autosomal recessive disorder due to mutations in the EIF2AK3 gene. It is characterized by permanent neonatal diabetes mellitus, skeletal dysplasia, liver impairment, neutropenia and renal dysfunction. Liver is the most commonly affected organ and liver failure is the commonest cause of death in this syndrome. The EIF2AK3 gene encodes a transmembrane protein PERK, which is important for the cellular response to endoplasmic reticulum (ER) stress. The absence of PERK activity reduces the ER’s abilities to deal with stress, leading to cell death by apoptosis. On acquiring febrile illness, affected patients suffer from liver injury, which may progress into liver failure and death. Renal involvement is less common and is mainly in the form of functional renal impairment at the advanced stage of the disease. Structural renal anomalies have not been reported in WRS. We report a 6-month-old girl who presented with neonatal diabetes on day 1 of life. Her genetic testing confirmed WRS due to missense mutation in the EIF2AK3 gene (c.2867G > A, p.Gly956Glu). Parents are first-degree cousins and both are heterozygous carriers to the mutation. 2 paternal uncles had the same mutation and died of liver disease at 1 and 14 years of age. Neither had a renal disease. She presented with hematuria during a febrile illness at the age of 5 months. Ultrasound scan showed right ectopic multicystic dysplastic kidney (MCDK). To the best of our knowledge, this is the first patient with WRS who is reported to have an MCDK disease.

Learning points:

  • Neonatal diabetes should be considered in babies presenting with early hyperglycemia particularly if there is a family history.

  • Genetic diagnosis in neonatal diabetes enables disease confirmation, genetic counseling and anticipation of potential complications during concomitant situations such as acute illness, trauma or major surgery.

  • There is lack of phenotype–genotype correlation in Wolcott–Rallison syndrome.

  • Structural kidney abnormality, in our case MCDK, can be seen in WRS.

Open access