Diagnosis and Treatment > Signs and Symptoms
Thyroid Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
Search for other papers by Peter Taylor in
Google Scholar
PubMed
Search for other papers by Sasan Dehbozorgi in
Google Scholar
PubMed
Search for other papers by Arshiya Tabasum in
Google Scholar
PubMed
Search for other papers by Anna Scholz in
Google Scholar
PubMed
Search for other papers by Harsh Bhatt in
Google Scholar
PubMed
Search for other papers by Philippa Stewart in
Google Scholar
PubMed
Search for other papers by Pranav Kumar in
Google Scholar
PubMed
Thyroid Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
Search for other papers by Mohd S Draman in
Google Scholar
PubMed
Search for other papers by Alastair Watt in
Google Scholar
PubMed
Institute of Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
Search for other papers by Aled Rees in
Google Scholar
PubMed
Search for other papers by Caroline Hayhurst in
Google Scholar
PubMed
Search for other papers by Stephen Davies in
Google Scholar
PubMed
Summary
Hyponatraemia is the most commonly encountered electrolyte disturbance in neurological high dependency and intensive care units. Cerebral salt wasting (CSW) is the most elusive and challenging of the causes of hyponatraemia, and it is vital to distinguish it from the more familiar syndrome of inappropriate antidiuretic hormone (SIADH). Managing CSW requires correction of the intravascular volume depletion and hyponatraemia, as well as mitigation of on-going substantial sodium losses. Herein we describe a challenging case of CSW requiring large doses of hypertonic saline and the subsequent substantial benefit with the addition of fludrocortisone.
Learning points:
-
The diagnosis of CSW requires a high index of suspicion. Distinguishing it from SIADH is essential to enable prompt treatment in order to prevent severe hyponatraemia.
-
The hallmarks of substantial CSW are hyponatraemia, reduced volume status and inappropriately high renal sodium loss.
-
Substantial volumes of hypertonic saline may be required for a prolonged period of time to correct volume and sodium deficits.
-
Fludrocortisone has a role in the management of CSW. It likely reduces the doses of hypertonic saline required and can maintain serum sodium levels of hypertonic saline.
Anderson Cancer Institute, Memorial University Medical Center, Savannah, Georgia, USA
Search for other papers by Jasmeet Kaur in
Google Scholar
PubMed
Augusta University School of Medicine, Augusta, Georgia, USA
Neonatology Intensive Care Unit, Memorial University Medical Center, Georgia, USA
Search for other papers by Alan M Rice in
Google Scholar
PubMed
Search for other papers by Elizabeth O’Connor in
Google Scholar
PubMed
Neonatology Intensive Care Unit, Memorial University Medical Center, Georgia, USA
Search for other papers by Anil Piya in
Google Scholar
PubMed
Search for other papers by Bradley Buckler in
Google Scholar
PubMed
Anderson Cancer Institute, Memorial University Medical Center, Savannah, Georgia, USA
Search for other papers by Himangshu S Bose in
Google Scholar
PubMed
Congenital adrenal hyperplasia (CAH) is caused by mutations in cytochrome P450 side chain cleavage enzyme (CYP11A1 and old name, SCC). Errors in cholesterol side chain cleavage by the mitochondrial resident CYP11A1 results in an inadequate amount of pregnenolone production. This study was performed to evaluate the cause of salt-losing crisis and possible adrenal failure in a pediatric patient whose mother had a history of two previous stillbirths and loss of another baby within a week of birth. CAH can appear in any population in any region of the world. The study was conducted at Memorial University Medical Center and Mercer University School of Medicine. The patient was admitted to Pediatric Endocrinology Clinic due to salt-losing crisis and possible adrenal failure. The patient had CAH, an autosomal recessive disease, due to a novel mutation in exon 5 of the CYP11A1 gene, which generated a truncated protein of 286 amino acids compared with wild-type protein that has 521 amino acids (W286X). Although unrelated, both parents are carriers. Mitochondrial protein import analysis of the mutant CYP11A1 in steroidogenic MA-10 cells showed that the protein is imported in a similar fashion as observed for the wild-type protein and was cleaved to a shorter fragment. However, mutant’s activity was 10% of that obtained for the wild-type protein in non-steroidogenic COS-1 cells. In a patient of Mexican descent, a homozygous CYP11A1 mutation caused CAH, suggesting that this disease is not geographically restricted even in a homogeneous population.
Learning points:
-
Novel mutation in CYP11A1 causes CAH;
-
This is a pure population from Central Mexico;
-
Novel mutation created early truncated protein.
Search for other papers by Jasmeet Kaur in
Google Scholar
PubMed
Search for other papers by Luis Casas in
Google Scholar
PubMed
Anderson Cancer Institute, Memorial University Medical Center, Savannah, Georgia, 31404, USA
Search for other papers by Himangshu S Bose in
Google Scholar
PubMed
Summary
Lipoid congenital adrenal hyperplasia (lipoid CAH), the most severe form of CAH, is most commonly caused by mutations in steroidogenic acute regulatory protein (STAR), which is required for the movement of cholesterol from the outer to the inner mitochondrial membranes to synthesize pregnenolone. This study was performed to evaluate whether the salt-losing crisis and the adrenal inactivity experienced by a Scandinavian infant is due to a de novo STAR mutation. The study was conducted at the University of North Dakota, the Mercer University School of Medicine and the Memorial University Medical Center to identify the cause of this disease. The patient was admitted to a pediatric endocrinologist at the Sanford Health Center for salt-losing crisis and possible adrenal failure. Lipoid CAH is an autosomal recessive disease, we identified two de novo heterozygous mutations (STAR c.444C>A (STAR p.N148K) and STAR c.557C>T (STAR p.R193X)) in the STAR gene, causing lipoid CAH. New onset lipoid CAH can occur through de novo mutations and is not restricted to any specific region of the world. This Scandinavian family was of Norwegian descent and had lipoid CAH due to a mutation in S TAR exons 4 and 5. Overexpression of the STAR p.N148K mutant in nonsteroidogenic COS-1 cells supplemented with an electron transport system showed activity similar to the background level, which was ∼10% of that observed with wild-type (WT) STAR. Protein-folding analysis showed that the finger printing of the STAR p.N148K mutant is also different from the WT protein. Inherited STAR mutations may be more prevalent in some geographical areas but not necessarily restricted to those regions.
Learning points
-
STAR mutations cause lipoid CAH.
-
This is a pure population from a caucasian family.
-
Mutation ablated STAR activity.
-
The mutation resulted in loosely folded conformation of STAR.
Search for other papers by N Amin in
Google Scholar
PubMed
Search for other papers by N S Alvi in
Google Scholar
PubMed
Search for other papers by J H Barth in
Google Scholar
PubMed
Search for other papers by H P Field in
Google Scholar
PubMed
Search for other papers by E Finlay in
Google Scholar
PubMed
Search for other papers by K Tyerman in
Google Scholar
PubMed
Search for other papers by S Frazer in
Google Scholar
PubMed
Search for other papers by G Savill in
Google Scholar
PubMed
Search for other papers by N P Wright in
Google Scholar
PubMed
Search for other papers by T Makaya in
Google Scholar
PubMed
Search for other papers by T Mushtaq in
Google Scholar
PubMed
Summary
Type 1 pseudohypoaldosteronism (PHA) is a rare heterogeneous group of disorders characterised by resistance to aldosterone action. There is resultant salt wasting in the neonatal period, with hyperkalaemia and metabolic acidosis. Only after results confirm isolated resistance to aldosterone can the diagnosis of type 1 PHA be confidently made. Type 1 PHA can be further classified into i) renal type 1 (autosomal dominant (AD)) and ii) multiple target organ defect/systemic type 1 (autosomal recessive (AR)). The aim of this case series was to characterise the mode of presentation, management and short-term clinical outcomes of patients with PHA type 1. Case notes of newly diagnosed infants presenting with PHA type 1 were reviewed over a 5-year time period. Seven patients were diagnosed with PHA type 1. Initial presentation ranged from 4 to 28 days of age. Six had weight loss as a presenting feature. All subjects had hyperkalaemia, hyponatraemia, with elevated renin and aldosterone levels. Five patients have renal PHA type 1 and two patients have systemic PHA type, of whom one has had genetic testing to confirm the AR gene mutation on the SCNN1A gene. Renal PHA type 1 responds well to salt supplementation, whereas management of patients with systemic PHA type 1 proves more difficult as they are likely to get frequent episodes of electrolyte imbalance requiring urgent correction.
Learning points
-
Patients with type 1 PHA are likely to present in the neonatal period with hyponatraemia, hyperkalaemia and metabolic acidosis and can be diagnosed by the significantly elevated plasma renin activity and aldosterone levels.
-
The differential diagnosis of type 1 PHA includes adrenal disorders such as adrenal hypoplasia and congenital adrenal hyperplasia; thus, adrenal function including cortisol levels, 17-hydroxyprogesterone and a urinary steroid profile are required. Secondary (transient) causes of PHA may be due to urinary tract infections or renal anomalies; thus, urine culture and renal ultrasound scan are required respectively.
-
A differentiation between renal and systemic PHA type 1 may be made based on sodium requirements, ease of management of electrolyte imbalance, sweat test results and genetic testing.
-
Management of renal PHA type 1 is with sodium supplementation, and requirements often decrease with age.
-
Systemic PHA type 1 requires aggressive and intensive fluid and electrolyte management. Securing an enteral feeding route and i.v. access are essential to facilitate ongoing therapy.
-
In this area of the UK, the incidence of AD PHA and AR PHA was calculated to be 1:66 000 and 1:166 000 respectively.