Diagnosis and Treatment > Signs and Symptoms
Search for other papers by Anne Marie Hannon in
Google Scholar
PubMed
Search for other papers by Isolda Frizelle in
Google Scholar
PubMed
Search for other papers by George Kaar in
Google Scholar
PubMed
Search for other papers by Steven J Hunter in
Google Scholar
PubMed
Search for other papers by Mark Sherlock in
Google Scholar
PubMed
Search for other papers by Christopher J Thompson in
Google Scholar
PubMed
Search for other papers by Domhnall J O’Halloran in
Google Scholar
PubMed
Search for other papers by the Irish Pituitary Database Group in
Google Scholar
PubMed
Summary
Pregnancy in acromegaly is rare and generally safe, but tumour expansion may occur. Managing tumour expansion during pregnancy is complex, due to the potential complications of surgery and side effects of anti-tumoural medication. A 32-year-old woman was diagnosed with acromegaly at 11-week gestation. She had a large macroadenoma invading the suprasellar cistern. She developed bitemporal hemianopia at 20-week gestation. She declined surgery and was commenced on 100 µg subcutaneous octreotide tds, with normalisation of her visual fields after 2 weeks of therapy. She had a further deterioration in her visual fields at 24-week gestation, which responded to an increase in subcutaneous octreotide to 150 µg tds. Her vision remained stable for the remainder of the pregnancy. She was diagnosed with gestational diabetes at 14/40 and was commenced on basal bolus insulin regimen at 22/40 gestation. She otherwise had no obstetric complications. Foetal growth continued along the 50th centile throughout pregnancy. She underwent an elective caesarean section at 34/40, foetal weight was 3.2 kg at birth with an APGAR score of 9. The neonate was examined by an experienced neonatologist and there were no congenital abnormalities identified. She opted not to breastfeed and she is menstruating regularly post-partum. She was commenced on octreotide LAR 40 mg and referred for surgery. At last follow-up, 2 years post-partum, the infant has been developing normally. In conclusion, our case describes a first presentation of acromegaly in pregnancy and rescue of visual field loss with somatostatin analogue therapy.
Learning points:
-
Tumour expansion may occur in acromegaly during pregnancy.
-
Treatment options for tumour expansion in pregnancy include both medical and surgical options.
-
Somatostatin analogues may be a viable medical alternative to surgery in patients with tumour expansion during pregnancy.
Search for other papers by Syed Ali Imran in
Google Scholar
PubMed
Search for other papers by Khaled A Aldahmani in
Google Scholar
PubMed
Search for other papers by Lynette Penney in
Google Scholar
PubMed
Search for other papers by Sidney E Croul in
Google Scholar
PubMed
Search for other papers by David B Clarke in
Google Scholar
PubMed
Search for other papers by David M Collier in
Google Scholar
PubMed
Search for other papers by Donato Iacovazzo in
Google Scholar
PubMed
Search for other papers by Márta Korbonits in
Google Scholar
PubMed
Summary
Early-onset acromegaly causing gigantism is often associated with aryl-hydrocarbon-interacting receptor protein (AIP) mutation, especially if there is a positive family history. A15y male presented with tiredness and visual problems. He was 201 cm tall with a span of 217 cm. He had typical facial features of acromegaly, elevated IGF-1, secondary hypogonadism and a large macroadenoma. His paternal aunt had a history of acromegaly presenting at the age of 35 years. Following transsphenoidal surgery, his IGF-1 normalized and clinical symptoms improved. He was found to have a novel AIP mutation destroying the stop codon c.991T>C; p.*331R. Unexpectedly, his father and paternal aunt were negative for this mutation while his mother and older sister were unaffected carriers, suggesting that his aunt represents a phenocopy.
Learning points:
-
Typical presentation for a patient with AIP mutation with excess growth and eunuchoid proportions.
-
Unusual, previously not described AIP variant with loss of the stop codon.
-
Phenocopy may occur in families with a disease-causing germline mutation.
Search for other papers by Melissa H Lee in
Google Scholar
PubMed
Search for other papers by Penelope McKelvie in
Google Scholar
PubMed
Search for other papers by Balasubramanian Krishnamurthy in
Google Scholar
PubMed
Search for other papers by Yi Yuen Wang in
Google Scholar
PubMed
Search for other papers by Carmela Caputo in
Google Scholar
PubMed
Summary
Most cases of acromegaly are due to growth hormone (GH)-secreting pituitary adenomas arising from somatotroph cells. Mixed pituitary adenoma and gangliocytoma tumours are rare and typically associated with hormonal hypersecretion, most commonly GH excess. Differentiating these mixed tumours from conventional pituitary adenomas can be difficult pre-operatively, and careful histological analysis after surgical resection is key to differentiating the two entities. There is little literature addressing the possible mechanisms for the development of mixed pituitary adenoma–gangliocytomas; however, several hypotheses have been proposed. It still remains unclear if these mixed tumours differ from a clinical perspective to pituitary adenomas; however, the additional neural component of the gangliocytoma does not appear to modify the aggressiveness or risk of recurrence after surgical resection. We report a unique case of acromegaly secondary to a mixed GH-secreting pituitary adenoma, co-existing with an intrasellar gangliocytoma.
Learning points:
-
Acromegaly due to a mixed GH-secreting pituitary adenoma and intrasellar gangliocytoma is rare.
-
These mixed tumours cannot be distinguished easily from ordinary pituitary adenomas on the basis of clinical, endocrine or neuroradiologic findings, and histological analysis is required for a definitive diagnosis.
-
Surgical resection is usually sufficient to provide cure, without the need for adjuvant therapy.
-
These mixed tumours appear to have a good prognosis although the natural history is not well defined.
-
The pathogenesis of these mixed tumours remains debatable, and ongoing research is required.
Search for other papers by Ekaterina Manuylova in
Google Scholar
PubMed
Search for other papers by Laura M Calvi in
Google Scholar
PubMed
Search for other papers by Catherine Hastings in
Google Scholar
PubMed
Search for other papers by G Edward Vates in
Google Scholar
PubMed
Search for other papers by Mahlon D Johnson in
Google Scholar
PubMed
Search for other papers by William T Cave Jr in
Google Scholar
PubMed
Search for other papers by Ismat Shafiq in
Google Scholar
PubMed
Summary
Co-secretion of growth hormone (GH) and prolactin (PRL) from a single pituitary adenoma is common. In fact, up to 25% of patients with acromegaly may have PRL co-secretion. The prevalence of acromegaly among patients with a newly diagnosed prolactinoma is unknown. Given the possibility of mixed GH and PRL co-secretion, the current recommendation is to obtain an insulin-like growth factor-1 (IGF-1) in patients with prolactinoma at the initial diagnosis. Long-term follow-up of IGF-1 is not routinely done. Here, we report two cases of well-controlled prolactinoma on dopamine agonists with the development of acromegaly 10–20 years after the initial diagnoses. In both patients, a mixed PRL/GH-cosecreting adenoma was confirmed on the pathology examination after transsphenoidal surgery (TSS). Therefore, periodic routine measurements of IGF-1 should be considered regardless of the duration and biochemical control of prolactinoma.
Learning points:
-
Acromegaly can develop in patients with well-controlled prolactinoma on dopamine agonists.
-
The interval between prolactinoma and acromegaly diagnoses can be several decades.
-
Periodic screening of patients with prolactinoma for growth hormone excess should be considered and can lead to an early diagnosis of acromegaly before the development of complications.